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Abstract

The objective of this dissertation is to explore the applications for Artificial Neural

Networks (ANNs) in the field of Navigation. The state of the art for ANNs has improved

significantly so now they can rival and even surpass humans in problems once thought

impossible. We present different methods to augment, combine, or replace existing

Navigation filters with ANN. The main focus of these methods is to use as much

existing knowledge as possible then use ANNs to extend the current knowledge base.

Next, improvements are made for a class of Artificial Neural Network (ANN)s which

provide covariance called Mixture Density Network (MDN)s. MDNs are necessary since

covariance is required for navigation problems. Finally the improvements and framework

are demonstrated in a Very Low Frequency (VLF) signals navigation problem. Without

ANNs, our VLF signals navigation problem would be very difficult.

We conduct two VLF navigation experiments with an indoor and outdoor environment.

The ANNs used for these problems provide confidence with probabilistic estimates of

position either through class probabilities or probability distributions parameterized by the

output of MDNs. ANNs need a measure of confidence in their estimates to work with the

filters since navigation filters require a confidence of their estimates. In our problems we

achieve an indoor localization accuracy of 86.7% for 50 discrete locations, and a 2D RMS

error of 63m for a 1km2 area of navigation.
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C) → ỹk Correction to filter function output

sNN
c (x̂k−1,uk, zk|θ

C) → x̃k Correction to filter function state

f NN
c (x̂k−1,uk|θ

C) → x̃k|k−1 Correction to system state predict function

mNN(zk|θ
M) → zn

k Estimate new measurements from measurements

xvii



Symbol Definition

θNN(x̂k−1,uk, zk|θ
D) → θk Estimate parameters of filter

xviii



List of Acronyms

Acronym Definition

AFIT Air Force Institute of Technology

ANN Artificial Neural Network

ANOVA Analysis of Variance

BP Back Propagation

BPTT Back Progatation Through Time

DFT Discrete Fourier Transform

DPF Discrete Particle Filter

ECEF Earth Centered Earth Fixed

EKF Extended Kalman Filter

FOGM First Order Gauss Markov Model

FFT Fast Fourier Transform

GCS Gradient Correlation and Scaling

GF Global Feedback

GMM Gaussian Mixture Model

GN Gradient Normalization

GNSS Global Navigation Satellite System

GPS Global Positioning System

GRU Gated Recurrent Unit

ITU International Telecommunication Union

LLA Latitude Longitude Altitude

LSTM Long Short Term Memory

LTI Linear Time Invariant

MDN Mixture Density Network

xix



Acronym Definition

MLP Multi-Layer Perceptron

MSE Mean Square Error

NaN Not a Number

NCE Normalized Covariance Error

NIST National Institute of Standards and Technology

PCA Principal Component Analysis

PDF Probability Density Function

PS Probability Simplification

RMS Root Mean Square

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SLAM Simultaneous Localization And Mapping

SMC Sequential Monte Carlo

SNR Signal to Noise Ratio

SoOP Signals of Opportunity

TOA Time of Arrival

TF Teacher Forcing

VLF Very Low Frequency

WAV Waveform Audio File Format

xx



NAVIGATION WITH ARTIFICIAL NEURAL NETWORKS

I. Introduction

Introduction

The goal for this dissertation is to utilize the advances in machine learning to

improve navigation. Navigation is the problem of traversing from one location to another.

Specifically we are interested in estimating navigation states such as position in order to

facilitate navigation. Methods that process information into navigation states are referred

to as filters. In order to improve navigation filters and thus obtain better state estimates, we

will leverage machine learning, specifically recent improvements to ANNs.

Recent advances in machine learning have led to ANNs which are much easier to

train and have much more complexity compared to their ancestors even a few years ago.

One of the biggest advancements is the Long Short Term Memory (LSTM) architecture

[35]. The LSTM architecture learns from sequences of information and retains memory of

the sequence in order to recognize patterns in the sequence. In navigation, a filter can be

described as a function of a sequence of system inputs and measurements to determine a

sequence of state estimates. Thus, LSTM ANNs can behave like a filter, but are created by

training on empirical data, not tailoring filters with a priori knowledge. This dissertation

explores the different roles ANNs can play in improving a navigation filter.

This dissertation provides a framework for improving navigation filters by integrating

ANNs into filters. There are two different general approaches for integrating ANNs in

filters. The first approach allows an ANN to replace an entire filter or functions of a filter.

There are many different possible configurations for this type of ANN integration. We

use non-linear filtering theory as a guideline to promote a theoretical backing for a certain
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configuration. This breakdown allows ANNs to perform common filter operations in a

framework which is more observable compared to one large ANN. The second approach

integrates ANNs and filters by augmenting an existing filter. The augmentations include

providing corrections, adding measurements, and adapting filter parameters. The second

approach has the advantage of maintaining the operations of a trusted filter while still

gaining a performance boost from ANN augmentation.

One contribution of this work is to provide a method to incorporate more a priori

knowledge into filters. Traditionally a user has a problem, such as navigation, and starts

researching and experimenting to discover knowledge about the problem. For example,

the user might read textbooks on the topic, research journal articles on the topic, or even

run their own experiments. All of these methods produce more knowledge for the user

to incorporate into a filter. The key is that the user must understand the meaning of this

knowledge before they can incorporate the knowledge into the filter. Books, articles, and

even experiments provide meaning to the user with their knowledge. The user understands

why the knowledge relates to their problem and how to use the knowledge in the filter.

However, there is one rich source of data that is currently missing in this example –

empirical data. Empirical data is collected data about the problem. For example, a test

of a system may record data about the experiment including sensor data, filter outputs,

and truth data. This empirical data contains knowledge about the problem, but may be

difficult for the user to understand. The difference between the truth and filter output reveals

the errors committed by the filter. To a human this error may look purely random and

thus contain no useful information. However, a learning algorithm may unveil meaningful

relationships between sensor data and this filter error. The learning algorithm can exploit

this relationship to improve the filter. ANNs are one example of a method to derive

meaning from knowledge. This now increases the a priori knowledge on the problem,

thus improving filter performance.
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Integrating ANNs into filters allows the filter to incorporate learning knowledge about

the problem. In the extreme case, new data with no a prior knowledge can be used in a filter

by learning the relationship between states, system input, and measurements. Empirical

data contains knowledge about the system, but a designer may not know the meaning of

this data. ANNs learn meaning from the empirical data through training. Thus, ANNs

bridge the gap between the knowledge in the empirical data and the meaning required to

design a filter. In some problems there would be no known relationships between states,

system inputs, and measurements without empirically derived meaning.

Another key aspect of using filters for state estimation is confidence. Confidence

is how much trust the user should give the state estimate. Without confidence, mean

point estimates are not useful for certain applications, such as navigation. Some types of

ANNs can provide confidence in the estimates with covariance information. One of these

ANN classes is called MDNs. MDNs output probability parameters instead of a discrete

probability distribution or continuous values. Most commonly, MDN output parameters

describe a Gaussian Mixture Model (GMM). GMMs are the summation of a fixed number

of weighted Gaussian distributions. This dissertation provides techniques and methods

that make GMM MDNs easy to train and improve the performance compared to previous

implementation of GMM MDNs. ANNs that provide covariance information are essential

for navigation, otherwise the user will have no trust in the ANN output.

We use VLF navigation as a specific example to demonstrate methods to integrate

ANNs and classic filters. Our VLF signals navigation problem uses ANNs to determine a

position because our VLF navigation problem includes very little a prior knowledge of VLF

signals collected. The information that is not known includes a description of the signals

from the VLF transmitters and where the transmitters are located. However, the problem

does have empirically recorded VLF signal samples with labeled positions. The ANNs

use the recored labeled data to build functions to relate VLF signals to position. These
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functions are a result of the ANNs learning the relationship between the VLF signals and

position. Machine learning techniques for supervised learning are applied to encourage the

ANN to learn salient features of the VLF signals which will persist over time and through

noise.

The VLF navigation problem uses a small loop antenna to record the VLF signals

while moving. These signals are recorded by an iPhone 5c which also records position

either automatically with Global Positioning System (GPS) or manually by recording

discrete locations on the phone. The VLF signals are preprocessed into frequency power

bins using a Fast Fourier Transform (FFT). An ANN is trained with the FFT features to

predict the location. This ANN is integrated with other filters to show how an ANN can

aid a filter. Other machine learning techniques are applied to the signal in order to train the

ANN.

Goals and Contributions

The goal of this dissertation is to define a framework for integrating ANNs and

filters. This framework encompasses existing deigns of ANN and filter integration. We

use non-linear filtering theory as a basis for the framework where other existing designs are

more ad hoc [77]. Additionally we improve methods to obtain confidence from ANNs.

The filter framework requires confidence and would be useless without the ability to

assign confidence to estimates. Specifically we introduce new methods and techniques for

working with MDNs with GMM output. As an example, the framework is applied to a VLF

navigation problem to showcase the strengths of the framework and MDN improvements.

The VLF navigation problem in this paper would difficult without ANNs due to lack of a

prior knowledge of VLF signals.

The following is a list of research contributions:

• Developed a framework for integrating ANNs into filters based on non-linear filtering

theory
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• The framework has two major sections for ANNs replacing filter components and for

ANNs augmenting existing filters

• Showed how existing ANN filter implementations fit into our framework

• Improved training and performance of GMM MDN

– Defined a new series of loss functions for GMM MDNs which improves

performance over unmodified GMM loss

– Outlined methods to avoid common problems when training GMM MDNs

• Demonstrated this filter framework and MDN improvements with VLF signals

navigation

Document Organization

This dissertation is organized as follows:

Chapter II is a review of relevant background and publications in this research area.

The background includes an overview of state estimation and control theory. Next the

background focuses on machine learning techniques and tools. Finally a brief overview of

the VLF electromagnetic band is given.

Chapter III outlines the ANN and filter integration framework. The chapter outlines

the framework’s basis in non-linear filtering theory in relation to existing ad hoc

implementations. Next, the chapter discusses how the framework encompasses existing

implementations of ANN and filter integration.

Chapter IV introduces methods and techniques to improve training and performance

of GMM MDNs which are vital to obtain confidence from ANNs. This includes a new type

of MDN loss function that achieves better performance compared to the standard MDN loss

function and ANNs without confidence.

5



Chapter V applies the ANN filter framework to a position estimation problem using

VLF signals. First the problem is defined along with the relevant collected data. Next,

the structure of the ANN and techniques used in training are outlined. This provides

the tools and methods necessary to use ANNs in the VLF navigation scenario. Finally

the chapter presents results using different implementations of the framework for the VLF

signals problem.

Chapter VI summarizes the results and covers possible future work as a result of this

research.
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II. Background & Literature Review

This chapter outlines previously known discoveries, research, and experiments that

relate to this dissertation. Four main topics of importance will be summarized. The first

topic is a background on state estimation outlining the different approaches with respect to

navigation. The second topic area is an overview of machine learning and ANNs with a

short description of the background and the models that are useful for the problem in this

dissertation. The third section outlines properties of the VLF spectrum exploited in this

dissertation. The final section reviews the state of the art for ANN and state estimation

integration.

Estimation

Estimation theory outlines the estimation or prediction of hidden variables or states,

from observed variables or states [54, 55]. Estimation describes the tools and methods to

make these estimations based on the given assumptions.

Estimation theory can have two different state classes. The first is continuous scalar

states like the range to a target. In this case, the states are continuous variables or vectors

of variables determined by our model. The second class of states is classification which

estimates discrete states. In classification, discrete states are usually classes or labels

without an ordering. An example of discrete estimation is a target detection problem. In

target detection, the states may be “target present” or “no target present”. To expand this

to a multi-class problem, we could change the question to which target is present and add

a null class for no target present.

States are hidden or unknown either because they cannot be observed or observing

those states directly is too expensive. Consider using a laser ranger sensor to determine

the distance from a wall. In this example the hidden state is the actual distance to the
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wall. The observations are the measurements from the laser ranger. The measurements

may be corrupted or biased by noise, so the measurements are not the true distance.

Estimation theory makes estimations or predictions of the true distance based on the

measured distance. In this example we had a priori knowledge about the problem. We had

a meaningful physics model representation of our laser ranger device. We used this physics

model representation to understand the nature of the measurements from the device. An

example of our model could be simplified as:

x = d + n + b (1)

where d is our true distance and x is the measured distance which is corrupted by some

kind of noise n and a bias b. Our a priori knowledge about the device informed us the

measurement would have noise and could also be biased. Our a priori knowledge could

have been from the device documentation which outlined the expected noise and bias for

the device. Our model is thus shaped by our a priori knowledge. If for example according

to the documentation the device had no bias, we would make a new model:

x = d + n (2)

which has no bias. In short we have a meaningful model based on a priori knowledge

derived from physics principles that governed the device. This is the basis for much of

state estimation and navigation. A model is created based on a priori knowledge of the

world and/or problem. This a priori knowledge has meaning to the user which allows them

to construct a model. Sometimes a priori knowledge is available but the meaning is difficult

to understand for humans. For example large amount of empirical measurements from our

laser ranger may contain information about the noise and bias. This dissertation shows

how to use a priori knowledge from empirical collected data to determine meaning for state

estimation.
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Estimation with Respect to Navigation.

Navigation is the problem of traversing from one location to another. In general

estimate of position at all times is not required to achieve navigation since we are only

interested in arriving at the end location. However estimating navigation states such as

position and time can facilitate certain navigation algorithms.

Navigation in general exploits a well known system dynamics and sensor models to

estimate the desired hidden states based on observable states. Many times humans use a

priori knowledge about the world to design navigation systems or algorithms to estimate

the desired hidden states. For example, the construction of an accelerometer is done based

on known physics principles to give specific force measurements. These measurements

are then related to position by known physics principles relating force to acceleration to

velocity to position. The GPS system was designed with a specific algorithms and physics

principles in mind to allow position to be determined by the signal from the satellites via

Time of Arrival (TOA) methods [67].

Other systems were not created specifically for navigation, but a priori knowledge

about the system was used to create a navigation algorithm. An example of this is Signals of

Opportunity (SoOP) navigation which uses available non-navigation signals for navigation

purposes. For example, emissions from communication radio towers can be used to

determine a position [82]. A priori knowledge about the properties of the antenna such

as antenna location, carrier frequency or signal structure are used to create a navigation

algorithm.

In navigation, the system dynamics and measurement functions are carefully derived

from a priori knowledge. The study of creating these functions spans many different

disciplines. In particular, from the control theory perspective, creating these relationships

is called state observation.
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State Observation

State observation is a subset of the controls problem [75]. The controls problem in

general attempts to solve for the system of inputs to command a plant, in order to achieve a

desired state. In this context, a plant is any dynamic system whose state we wish to control.

One part of the controls problem is creating a state observer which estimates the states from

the system inputs, measurements and current state. In this view of the problem the states

are the values which can be predicted from the system inputs, measurements, and current

state. This is usually done by estimating the next state value xk+1. System inputs u are

values which can be driven by the controller. This dissertation will adopt the convention

that system inputs are inputs to a plant or other dynamic system and inputs in general are

arguments for functions or algorithms. For example, the thrust of an aircraft is a system

input controlled by the pilot. Thus the control problem of achieving a certain airspeed is

done by adjusting the thrust. Measurements are values which are observed by sensors but

cannot be directly controlled. In the aircraft example, a sensor can measure airspeed of

the aircraft which can aid the pilot in maintaining a certain airspeed, but the pilot cannot

directly set the airspeed with a thrust controller. To continue this example, a state of the

aircraft may be its position in latitude and longitude. There is no way to observe or change

this state directly, but it can be estimated or indirectly changed with knowledge of the input

thrust, measured airspeed, and heading.

Control problems are many times simplified to a Linear Time Invariant (LTI) state

space representation of the plant and measurement equation. The LTI assumption means

that the plant and measurement equations are purely linear and thus can be represented

by matrix operations. Also, the phrase “time invariant” means these matrices do not

change over time. In general the discrete representation can be calculated from the

continuous equation using a transformation (which is beyond the scope of this dissertation)
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or determined directly. The LTI system and measurement equations are

xk+1 = Axk + Buk + wk (3)

zk = Cxk + Duk + vk (4)

where x is the state vector, u is the system input vector, z is the measurement vector,

w is a noise process that corrupts the model of the plant, and v is a noise process that

corrupts the model of the measurement observation. Here, A is the matrix that represents

the contribution of the current state to the future state, B is the matrix that shows the

contribution of the input directly to the state, C is the matrix that relates the state to the

measurements and D is the feed forward matrix that shows how the system inputs are

directly related to the measurements. The subscript on each vector denotes the time index

of that vector value. For example, xk is the state at time index k where we assume a fixed

time interval.

Equation 3 is called the plant, system dynamics, propagation, or state predict equation.

The state predict equation determines how to propagate or predict the state from one time

step to the next. This equation can be used as an open loop estimate to determine the

state from a given set of initial states and a time series of the future inputs. However,

the system dynamics estimate will quickly diverge from the true estimate as the process

noise corrupts the next state. Thus the perfect system dynamics solution differs from the

real world situation due to noise. To limit this divergence, Equation 4 (the observation

equation) makes a measurement zk of some observable value. The observed value is

related to a predicted value from the states using Equation 4. A residual is the difference

between the observed measurement and the estimated measurement. The residual is used to

adjust the states to make the estimated measurement closer to the observed measurement.

The residual can then correct some of the error introduced by plant noise. However, the

correction will not be perfect either, because measurements are corrupted by measurement

noise and modeling errors in the measurement equation. Thus a trade off must be made to
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determine how much to correct based on measurements. The Kalman filter is an example

of how to optimally make this trade off given confidence in states and measurements.

Kalman Filter.

A popular method of state observation for navigation is the Kalman Filter [32]. In this

sense a filter can be thought of as reducing (filtering) all the incoming data and distilling

it down to only the desired output. A Kalman filter assumes that the system is a linear

system so that all the dynamics and measurement updates can be expressed as differential

linear equations in the continuous version, and difference equations in the discrete version.

The uncertainty in the dynamics and measurement update is assumed to be purely zero-

mean white Gaussian noise. The Kalman filter is the optimal estimator when the dynamics

are purely linear and all noise is zero-mean white Gaussian noise. The discrete dynamics

equation of the filter is written as:

xk+1 = Fxk + Buk + wk (5)

where x is the state vector for the values to be estimated, F is the matrix which determines

the change in state based on the state, B is the matrix which determines the change in the

state based on the input, w is an instance of a Gaussian noise random variable distributed

as wk ∼ N(0,Qk), and u is the system input. When this equation is turned into time variant

instead of time invariant, each matrix will get a subscript of the time step it relates to:

xk = Fkxk−1 + Bkuk + wk (6)

where the matrices Fk and Bk are now subscripted because at different time steps the values

in the matrices can change. This change can be driven by functions of time alone or some

other external information. The discrete matrix Fk is written asΦ in the literature [65, 66].

The measurement update equation is only in discrete time as shown:

zk = Hkxk + vk (7)
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where zk is a measurement which relates to the value of the state xk through a matrix

Hk. The vector vk is an instance of a white Gaussian noise random variable distributed as

vk ∼ N(0,Rk) which corrupts the measurement.

The Kalman filter uses these equations and starting conditions to provide an average

estimate of the state xk and a covariance of that estimate Pk. The initial mean estimate is x0

and the initial covariance of the mean estimate is the covariance matrix P0. The filter then

propagates the state using the dynamics equation. The state-predict equation of the Kalman

filter is given as:

x̂k|k−1 = Fkx̂k−1|k−1 (8)

Pk|k−1 = FkPk−1|k−1FT
k + Qk (9)

where x̂k|k−1 is the estimate for x at time step k given time step k − 1. When a measurement

is made, the state estimate and covariance are updated to reflect the new measurement. The

Kalman filter update equations are given as:

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
(10)

x̂k|k = x̂k|k−1 + Kk
(
zk −Hkx̂k|k−1

)
(11)

Pk|k = (I −KkHk) Pk|k−1 (12)

where Kk is the Kalman gain which can be thought of as how much to change the current

state, such that the estimated measurement is closer to the observed measurements. The

change is based on the trust in the measurement compared to the trust in the current state

estimate. Lower Kalman gain represents less trust in the measurement. For example, when

the gain is close to all zeros, the update equation will largely ignore the measurements. With

these equations, a Kalman filter can process measurements to update the state estimate. The

Kalman filter provides the optimal estimate, but only for linear problems corrupted by white

Gaussian noise.
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Particle Filter.

A particle filter is a Sequential Monte Carlo (SMC) Method to estimate a non-linear,

non-Gaussian, Markovian state space. A particle filter can be used in non-linear problems

with non-Gaussian noise where a Kalman filter would perform poorly. The problem starts

with a known probability of states p(x0), a method to predict the states forward in time

p(xt|xt−1), and a measurement prediction equation that determines the probability of a

measurement y from the current states p(yt|xt) [17]. From these functions the propagation

equation is [17]:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1 (13)

where the probability of the state at the next time step xt is calculated given all the

previous measurements y1:t−1. Next we use the update equation to incorporate the current

measurement yt [17]:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫

p(yt|xt)p(xt|y1:t−1) dxt
(14)

where we have updated our probability from the last time step to the current time step using

the latest measurement yt. While these equations look simple, the marginal probabilities

are difficult to compute since we are integrating over our entire continuous state space dxt.

To approximate the distribution, Monte Carlo methods that track a finite number of states

or particles are used. These Monte Carlo algorithms track N particles which represent

possible state values. Each particle also has a weight which determines the probability

of that particle compared to the other particles. These weighted particles represent the

probability of the states at each time step p(xt).

While it may be difficult in general to integrate over a continuous state space, a

discrete state space is much simpler since the integral is now a sum. Thus, discrete state

problems are much simpler to model as a particle filter. In a discrete particle filter, each

particle represents one of the discrete states and the weight is the probability of that state.

Consequently, all particle weights sum to one to provide a valid probability distribution
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over all states. In a discrete particle filter our propagate equation turns into:

p(xk
t |y1:t−1) =

N−1∑
i=0

p(xk
t |x

i
t−1)p(xi

t−1|y1:t−1) (15)

where we calculated the probability of state xk
t at time t by summing the probability that

any i particle or state will transition to the k particle or state. Similarly the measurement

equation becomes:

p(xk
t |y1:t) =

p(yt|xk
t )p(xk

t |y1:t−1)∑N−1
i=0 p(yt|xi

t)p(xi
t|y1:t−1)

(16)

where we update the probability of each particle or state by multiplying by the probability

that state produced the given measurement. Also, the state probabilities are normalized to

make a valid probability distribution. To reiterate, a discrete particle filter is a simplification

of a general particle filter, where a general particle filter approximates continuous state

distributions.

Particle filters are useful in non-linear state estimation when the distributions are non-

Gaussian and the system is highly non-linear. A problem with particle filters is that the

particle filters require exponentially many more particles to represent high dimensional

state spaces. Thus while the estimate will not degrade in high dimensionality, the

computation required to make the estimate may be unreasonable, depending on the

constraints of the problem.

Non-linear State Observation.

This section outlines the general framework of non-linear filtering theory. An upfront

visual block diagram of the entire filter process is show in Figure 1. While many plants and

measurement equations are well represented as LTI systems, many are not. If we assume

that at a minimum the noise is additive then we can define a state predict and measurement

function [74, 50]:

xk+1 = f(xk,uk) + wk (17)

zk = h(xk,uk) + vk (18)
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Figure 1: Block diagram of a generic standard filter. The blue rounded block represents the

filter operation FILTER(). The overall filter has three components the state predict (orange

block), measurement update (green block) and output (light blue block).

where f is a function that determines the next state based on the current state and system

input. Likewise h is a function that determines the measurement based on the current

state and system inputs, and wk and vk are independent white noise processes. From these

equations we can estimate the next state and measurement assuming the noise values are

zero mean:

x̂k+1 = f(x̂k,uk) (19)

ẑk = h(x̂k,uk) (20)

A general filter uses the knowledge in the state predict and measurement equations to

estimate the state. First the filter propagates the state to the time of a measurement x̂k|k−1.

Next the filter makes an estimate of the measurement ẑk|k−1 given the propagated state.

The filter can then update the state using the error between the actual measurement and
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the estimated measurement z̃k = zk − ẑk|k−1. This step is called the measurement update.

A filter in general may have output that is not simply the state values. In this case, an

output function that takes only the states is used to transform the estimate of the state to the

estimated output:

ŷk = o(x̂k) (21)

where the final output vector is ŷ. For example if the state is a Earth Centered Earth Fixed

(ECEF) coordinate the user may desire a Latitude Longitude Altitude (LLA) output. Thus,

the output function makes the necessary conversion of coordinate frames. A complete filter

combining the state predict, measurement estimate, measurement update, and output is

denoted as:

ŷk = FILTER(x̂k−1,uk, zk|θ) (22)

where the current output is based on the current input and measurement and last state

value, and θ represents parameters of the filter function. The filter function will internally

update the state variable from time step k − 1 to k while it computes the output. In order

to determine how to update the states based on the non-linear equations of the system the

Kushner equation is required as described in the next section.

Kushner Equation.

The Kushner equation is a conditional probability equation for the state of a stochastic

non-linear system [3, 5, 45]. The Kushner equation is conditioned on noisy measurements

of outputs which reveal observability of the states. Thus the Kushner equation is a solution

to the non-linear filtering problem in estimation theory. The Kushner equation assumes the

states propagate according to the following Ito stochastic equations for an N state dynamics

and M measurements:

dx = f(x, t) dt + G(x, t) dw (23)

dz = h(x, t) dt + dv (24)
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where x is the state vector of size N, z is the measurement vector of size M, dx and dz

are incremental changes in the state and measurements. The vector f(x, t) is of size N

and relates the current state to the next state, G(x, t) is a N × Q matrix which describes

the impact of noise on the states, and h(x, t) is a vector of size M which relates the states

to the measurements. Together, these two vectors and single matrix are functions of the

current state and time. Further, w and v are independent Brownian motion processes with

E[dw(t)dw(t)T ] = Q(t) and E[dv(t)dv(t)T ] = R(t). Thus, dw and dv are incremental

changes in the Brownian motion process which makes dw and dv each a white Gaussian

noise process. With this state and measurement equation the Kushner equation for the

change in probability dp(x, t|θk,Zt) of state x at time t is [45]:

dp = L(p) dt + (h − ĥ)T R−1(t)(dz − ĥdt)p (25)

θk = {f(x, t),G(x, t),h(x, t),R(t)} (26)

L(p) =
∂p
∂t

= −

N∑
i=1

∂

∂xi
[p fi] +

1
2

N∑
i=1

N∑
j=1

∂2

∂xi∂x j
[p(GQGT )i j] (27)

ĥ = Et[h(x, t)] =

∫
h(x, t)p(x, t)dx

where θk is a given set of parameters describing the system, L is the Kolmogorov forward

equation which propagates the probability into the future based on the current probability

and state dynamics, ĥ is the mean estimate of the measurements given the state probability

at the current time, and Zt is the time history of measurements up to time t which is used

to determine the incremental changes in measurements dz. In this equation (dz − ĥdt) is

the innovation term, or the residual–the difference between the actual measurement dz and

expected measurement based on the current state ĥdt. Thus, the Kushner equation shows

that for a non-linear system with white Gaussian noise processes corrupting the plant and

measurements, there is a form for filtering the updates to improve the estimate of the states.

This form specifically has a gain and a residual which is added to the current state estimate
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propagated by L(p). This gain value is determined by the system measurement equation

h(x, t), the measurement noise R(t), and the current states.

Later in Section III, this Kushner equation form will be exploited to determine the

roles of ANN in filters. This approach will use empirical data to derive previously unknown

relationships between the states, measurements, and output. The empirical information will

then shape the ANNs to become the functions used in a filter. In order to go beyond current

a priori knowledge and bring meaning to empirically collected states, measurements, and

output data, a different approach is needed. The study of learning from empirical data

is called machine learning. Machine learning allows us to learn new functions without

explicitly knowing the system parameters {f(x, t),G(x, t),h(x, t),R(t)}.

Machine Learning

Machine Learning are methods and techniques to calculate models when the form of

the model is unknown [43]. Earlier in this paper, the background of estimation theory

generally dealt with parametric models. A priori knowledge enabled us to know the form

of the models, but some possible parameters in the model needed to be determined from

external information. For example our laser ranger was missing a bias term which could

be determined by a calibration. Our bias value may change, but the form of the model

is always the same. Machine Learning uses models without a predetermined form to

estimate hidden states from empirical data. The key difference is that the meaning of the

parameters in the resulting machine learning models is not know to the user. The user does

not understand what each parameter means in the machine learning created models. For

example, we knew exactly the meaning of our bias term in the laser ranger problem, namely

the bias in our sensor. In general, we will not know the meaning of the parameters in the

machine learning created model. These models are trained with data beforehand in order

learn how to replicate the empirical data. This empirical data contains input output pairs

which we want our model to map. The learning process then develops a model that will
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generalize and map new input and output pairs. Learning of this form is called supervised

learning because our model is trained to map these input to output pairs given example

input output pairs.

A simple machine learning model is a linear regression model. This model multiplies

each of the inputs by a coefficient and adds a bias term to determine a scalar output [43]:

y = β0 + β1x1 + β2x2 + · · · + βpxp + ε (28)

In this equation x is our vector outputs, and each βp is a different coefficient for each of the

input features or predictors xp, except for β0 which is the bias or intercept term. The model

is trained to determine coefficients and bias that reduce the error as much as possible on the

training data in order to accurately estimate future data. Now the form of our model is not

determined by expert information based on a priori knowledge or system design. Instead

we train and test this model to determine if it performs well enough for our problem. We

never make the assumption that the true nature of the problem is explained by the model.

We may also never understand the meaning behind the coefficients and bias.

The form of the linear regression model is the same for all linear regression models.

The only difference is the values and the number of the coefficients and biases. These values

are learned from empirical data. In our laser ranger example, our model would eventually

learn to give the measurement coefficient β1 a value near 1 and the bias coefficient β0

close to the true calibration bias of the sensor. Thus, our model will learn the model we

previously defined. In this case we happened to pick a model that was the same class as

the one we defined before using our a priori knowledge. Machine learning becomes much

more useful when we have no a priori information and cannot determine the form of the

model beforehand.

There are many different kinds of machine learning models. What the models have in

common is that they learn representations that are made to fit our observed training data.

The models never have defined parameters to fill in such as calibration biases or physics
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constants. Machine learning created model have parameters which are determined form

training data. These parameters usually have little meaning to the user especially as the

models become larger and more complex. An example of a more complex class of machine

learning model used by this dissertation is the ANN class of models.

Artificial Neural Networks

ANNs are a powerful class of machine learning models which can approximate any

continuous function [38] given enough perceptrons. Perceptrons are the basic units of an

ANN. A perceptron has many inputs and one output as shown in Figure 2. The inputs are

either the actual inputs to the model or outputs of other perceptrons. The equation for a

perceptron is:

y = f

b +

N−1∑
n=0

xnwn

 (29)

where N is the number of inputs to the perceptron, y is the output of the perceptron, xn is

the nth input to the perceptron, wn is the nth weight, b is the bias, and f is some function

called the activation function. The inputs to a perceptron are multiplied by a set of weights

summed together along with bias. The bias can be thought of adding an extra input to the

perceptron that is fixed at one and multiplying it by a weight as shown

y = f

N−1∑
n=0

xnwn

 (30)

where x0 is now forced to have a value of 1. We use this shorthand to refer to all the weights

and biases as simply the weights. This is mathematically a dot product between the inputs

to the perceptron and the weights. Next, an activation function is applied to the dot product

result.

The most basic activation function is a linear function f (x) = x. However the power of

an ANN is realized when a non-linear activation function is used. If only linear activation

functions are used then the ANN can only represent linear functions. Non-linear activation

functions are required for the ANN to model non-linear functions. Some common non-
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linear activation functions are the sigmoid function f (x) = σ(x) = 1
1−e−x or the hyperbolic

tangent function f (x) = tanh x = e2x−1
e2x+1 [52] . In general, an activation function maps a scalar

to another scalar. This allows the activation functions to operate element-wise on a vector.

However some activation functions operate on vectors instead of scalars. For example, the

softmax function transforms a vector into a valid probability distribution which sums to

one

softmax(x) j =
exp(x j)∑K

k=1 exp(xk)
for j = 1, . . . ,K (31)

where x is some argument vector with size K. This function is often used as the activation

function of the last layer of an ANN which is performing classification. Perceptrons are

grouped together and connected to describe more complicated phenomenon many times in

a layered format as described in the next section.

Activation

function

∑w2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 2: Basic Perceptron design. The inputs to the perceptron are xn and the single scalar

output is after the activation function. Each input xn is multiplied by a weight wn then

summed together. The activation function performs a possibly non-linear operation on the

sum.
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Multi-Layer Perceptron.

Using perceptron outputs as the inputs of other perceptrons can forms graphs of

perceptrons. Perceptrons in general can be connected in any way conceivable, but most

ANNs use a specific architecture that has been proven to work [38, 58]. The simplest

architecture is the fully connected layer architecture which makes Multi-Layer Perceptron

(MLP) networks. In an MLP architecture, perceptrons are arranged in layers as shown in

Figure 3. Each perceptron in a layer has as its input all the outputs of the previous layer.

The perceptron then in turn passes its output to each perceptron in the next layer as shown

in Figure 3. The middle layers in a MLP network are called the hidden layers. We denote

the size of a layer as the number of perceptrons in that layer. Capacity is the expressive

ability of the overall network which comes from the number of perceptrons in each layer

and total number of layers. A network with larger capacity has more layers with more

perceptrons in each layer. With a non-linear activation function and enough perceptrons, a

one layer MLP can approximate any function [38, 36]. This is similar to how any signal

can be reconstructed from the frequency components that make up the signal given enough

frequency components. The output of each perceptron is a different kind of non-linear

function which can be combined enough times to approximate any arbitrary function. The

ability to approximate any function is an important property of the MLP architecture. This

property means that as long as there is some underlying function to the data, it is possible

for an ANN with enough capacity to learn to approximate that function. The real problem

is how to train the network to represent the desired arbitrary function.

Training

Training an ANN involves learning the values for all the weights of each perceptron.

The most common way to achieve this is to perform a version of Stochastic Gradient

Descent (SGD) [58] such as RMS-Prop [15] or Adam [56]. SGD methods take the
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Figure 3: Basic MLP architecture for a one hidden layer neural network. The hidden layer

and output layer circles are each perceptrons. The input values are passed to the hidden

layer as inputs to each perceptron.

derivative of a loss function with respect to all the weights in the network. The loss function

gives a value for the SGD optimizer to minimize. Next, the optimizer updates the weights

in the negative direction of the gradient in order to minimize the loss function. This process

is referred to as Back Propagation (BP), because the errors in the loss function propagate

backwards to the weights in order to make weight updates. A learning rate is multiplied by

the gradient to control magnitude of the weight change for each update. The BP algorithm

[58] is an efficient algorithm that applies the derivative chain rule for all the weights while

remembering previously calculate values. The BP algorithm allows efficient derivative

calculation and makes training ANNs much faster. This is the same concept as how the FFT

is much faster compared to a Discrete Fourier Transform (DFT) even though they preform

the same task. Different variants of SGD exist to change the learning rate depending on

different factors such as the momentum from the previous gradients [72, 87, 56].

Batch Update.

ANN training is done in batches of samples when using SGD. The loss function is

evaluated for many input-output sample pairs. Next an overall weight update is determined

from the current batch of input-output pairs. The batch update allows the training average

24



over noise in one sample and make weight updates move more directly to the minimum.

This is at the cost of computation since batch updates require more computation per

weight update compared to a single sample update. Thus, updating weights for each

pair individually allows the same magnitude weight change for less computation [104].

However, with parallelization the batch update can computed much faster than simply

naively computing the updates in sequence, since the weight update calculation from

each sample is independent from other samples. Calculating the weight updates in

parallel reduces the overall computation time compared to calculating the weight updates

sequentially. Parallelization now allows a batch weight update to be made in approximately

the same time as a single weight update. Batch updates are done off line when all the sample

data is available at once. If training is done on each sample as it is recorded, then it is called

online learning.

Online learning.

Online learning is when the weights of an ANN are adjusted in real time as the

data is recorded. Thus, the weights are updated for each new sample as the sample is

recorded. One popular online learning method in the state estimation field is the Extended

Kalman Filter (EKF) optimizer [32] [39] [51] detailed in Section II. The filter includes the

weights of the ANN as its states. This allows the filter to use measurement updates to

modify the weights of the ANN. The EKF optimizer works well as online learning where

each measurement is slowly changing the weights of the ANN to represent the current

environment. Online learning is most effective if applied after the ANN has accurate

starting point for its weights. The online updates then correct small changes in the ANN to

reduce the residual error.

Loss Functions

When training an ANN, a loss function is required to determine how well an estimate

matches a target. This loss function is the target of an optimizer to minimize. In general,
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a loss function L only uses the output from the ANN and some target output value to

return a metric which is a smaller value when the ANN output is more desirable. Different

loss functions are used depending on the goal of the ANN. The loss functions will differ

depending on the whether the output is discrete classification or regression.

If the goal is classification, then a loss function is usually the cross entropy between

the true class distribution (usually only one class has a probability of 1) and the estimated

class distribution. The loss function for cross entropy starts with the discrete cross entropy

equation [87]:

H(p, q) = Ep[− log(q)] (32)

where H is the cross entropy between the true distribution p, and the proposed distribution

q (calculated by the ANN). The smaller the value of H the closer the proposed distribution

is to the true distribution. If we assume the probability distributions p and q are vectors

that give the probability for each class x of X classes we can make the cross entropy into a

summation:

H(p, q) = −

X−1∑
x=0

p(x) log(q(x)) (33)

where p, q must sum to one to be valid probability distributions over all classes, x is the

label for our discrete classification which we will treat as an integer from 0, 1, . . . X − 1

where X is the total number of labels. Thus, q(x) is the probability that class x is the true

class. We have summed the cross entropy for all X possible class labels of our probability

distributions p, q. Now we can use this definition of cross entropy to make a loss function

L for all our samples:

L = −

N−1∑
n=0

X−1∑
x=0

p(x) log(q(x)) (34)

where p is the target probability vector and q is the predicted probability vector from the

ANN. The loss function L sums up all the training examples from all N samples. We can
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simplify this equation when we restrict our p distribution to a vector that contains zeros

except for one entry which is one, referred to as a one hot encoding or a vector of support

one. This now makes the equation:

p(x) =


0 if x , xt

1 if x = xt

H(p, q) = − log(q(xt)) (35)

where xt is the correct class label which has p(xt) = 1. This simplification makes training

an ANN much faster because the number of classes is not a factor for how long the loss

function will take to complete. This loss function is calculated for each training sample

and summed together to get a total loss for a given batch of N samples. Thus, the optimizer

will attempt to minimize the loss by changing the output distributions q(x) in order to more

closely match p(x). In order to change the distribution q(x), the optimizer changes the

weights of the ANN. However, since our p(x) distributions are one hot vectors, the end

result will be to attempt to maximize the probability of the correct class q(xt), which will

drive our cross entropy loss function down (since log(1) = 0). The optimizer will not just

try to make q(xt) the highest value compared to the rest of the x’s but it will keep being

rewarded for increasing the true probability. This property allows a SGD algorithm follow

the gradient of the loss function even when the correct class is the most probable.

If the goal of the ANN is regression, then Mean Square Error (MSE) is typically used

as a loss function [87]. MSE compares the true output vector y to the estimated output

vector ŷ for each training example.

MSE(Y, Ŷ) = 1/N
N−1∑
n=0

K−1∑
k=0

(
yn

k − ŷn
k
)2


where yn

k is nth training example vector yn, and k represents the kth index of the vector.

Mean Squared Error (MSE) is a popular loss function to use in machine learning

due to a number of convenient properties [101]. MSE is a simple metric that requires
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only a few computations to compute, and has a clear relation to distance in two and three

dimensions. MSE also has desirable optimization properties such as convexity, symmetry

and differentiability. MSE also assumes the ordering of the dimensions and the signs or

direction of the error are both irrelevant.

Stability and Generalization

Generalization error describes how accurately a model can perform on data which it

has never seen before. In a learning algorithm, data which the model has never seen is

data which was withheld from training and validation. This withheld data is usually called

testing data, but can also be any future samples from the same distribution as the training

and validation data. Training and validation data are any data which was used to determine

the current state of the model including weights, architecture, and type. Usually training

data is used for changing weights, and validation data is used for parameter selection.

Parameter selection can include properties of the ANN (like the number of layers or

layer size), as well as training parameters (such as the λ of L1 regularization explained

in Section II).

Low generalization error means models will perform well on predicting future data.

When generalization error is low, the model has generalized well to the underlying problem

and has not over fit to the available training and validation data. The true model error

can be expressed in terms of the input space x and output space y where every possible

combination z = {x, y} is contained in set z ∈ S and one learned function fn(x) = ŷ is [2]:

I[ fn] =

∫
S

V( fn(x), y)ρ(x, y)dxdy (36)

where V is a loss function describing the error between estimate ŷ = fn(x) and the true

output y, and ρ({x, y}) is the probability of obtaining that combination of input and output.

This equation describes the total error over all possible input output combination in S, but

the probability of all those combinations ρ is usually unknown or difficult to estimate. Thus,
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a sample of the true probability is made by taking measurements to obtain a discrete sample

set Si of size N. With this sample set, the empirical error can be calculated by:

IS [ fn] =
1
N

N∑
i=i

V( fn(x), y) (37)

Thus the generalization error G is the difference between the empirical error (which is

usually used to train a model) and the true model error (which is usually unknown):

G = I[ fn] − Is[ fn] (38)

While the generalization error usually cannot be computed directly, there are methods

to estimate and bound the error. One measure of generalization is stability. Stability

characterizes how small changes in the sample space Si will change the model fn. Two

stability criteria can be used to determine how stable a model is and thus estimate its

generalization error. The first stability criteria is called “leave one out cross validation”.

This criteria means that the empirical error must not change by some small values ε when

one sample is removed from the training of fn. In simple terms, one sample point must

not have enough weight to significantly change the entire model fn if it is removed. The

other stability criteria is called “expected leave one out error stability”. This criteria is

met if the prediction of a sample is within some small value ε when the sample was used

in training compared to if the sample was removed from training. In short, the algorithm

should predict the same value for one point if it was included in training or not. [8]

These stability criteria can reveal possible over fitting by a model. When a model over

fits, it has lowered the error on the training set by creating highly varying changes in its

predictions that match only the training samples. An example of over fitting is fitting a

polynomial to points on a line where the polynomial passes through all the points but does

not accurately represent other points on the line. In this case over fitting occurs because

the polynomial had enough capacity to represent all the sample points but represented the

sample points by misrepresenting the underlying function. In order to generalize better, the
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model must have smoother curves to interpolate between training samples. The stability

criteria are geared to stop this exact problem. For example, leave one out cross validation

can reveal that the model over fits to the training points. The left out samples usually have

poor prediction accuracy when the model is not stable. The poor accuracy occurred because

the model was not smoothly interpolating between the training samples.

Thus, while generalization error is difficult to explicitly calculate, enforcing stability

in the model can lower generalization error. Stability reduces generalization error by

disallowing a model to over fit to training samples, which will generally allow better

performance on samples not included in training. Regularization can enforce stability by

penalizing models for properties that lead to instability.

Regularization

Regularization is methods and techniques that attempt to lower test error and thus

generalize better by possibly increasing the training error. Regularization attempts to have

the training error match the test error, which means the model is likely to generalize to

unseen future data [43]. ANNs use many different forms of regularization to lower test

error. This section outlines a few methods used in this dissertation.

A simple form of regularization is adding a loss term that is proportional to the size of

the weights [43, 38]. Larger weights increase the penalty thus the model will try to reduce

the magnitude of the weights while still trying to minimize the original loss function. This

prevents the model from putting too much weight on a specific input path to predict the

output. An L1 regularization function adds loss based on the absolute value of the weights:

L1reg = λ1

N−1∑
n=0

|wn| (39)

where |wn| is the absolute value of the nth weight, and λ1 is a constant to weight the impact

of this regularization term compared to the overall error. An L2 regularization function
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adds loss based on the square of the weights:

L2reg = λ2

N−1∑
n=0

w2
n

where λ2 is a constant to weight the impact of this regularization term compared to the

overall error.

Early stopping is allowing the training to stop early based on some criteria [43, 38].

Early stopping can be based on a validation set error to prevent the model from memorizing

too many noise details about the training data that will not generalize. In this context, the

training will stop when validation error has not decreased after a number of weight updates.

Dropout is a form of regularization used during training to force a model to find

different ways of predicting the output [38, 92]. Dropout sets some weights in a neural

network to zero during a training batch. All the other weights that were not dropped out

are proportionally increased to keep the same magnitude of the final output vector. For

example, if half the weights are set to zero the remaining weights are doubled to make up

for the loss of the other weights. Dropout is performed on a probabilistic basis where each

weight has a probability of being zero. The weights chosen to be zero are changed after

each batch of samples are used to calculate a weight update. This prevents the model from

relying on specific inputs as the only way to predict an output. When weights are dropped

out, the current weight update will find a way to predict output without the input paths that

had their weights dropped out. Thus the ANN will find alternative methods to use the input

paths that were not dropped out to calculate the output. This makes the ANN more robust

to learning only one input-output relation which may not always be true. After training all

weights are no longer dropped out for prediction.

Other more complex form of regularization exist but they all attempt to limit the

capacity of a model in an attempt to have lower generalization error [38, 43].
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Principal Component Analysis

Principal Component Analysis (PCA) is the decomposition of multidimensional data

into components by variability [43, 73, 109]. The multidimensional data consists of

samples of vectors. Each index of the vector is a different dimension. A covariance matrix

Σ between each dimension can be calculated as:

Σ =
1
N

N−1∑
n=0

(xn − µ) (x − µ)T (40)

where xn is the nth sample of vectors, and µ = E[x] is the mean vector of all the

samples. PCA is a linear transform that makes the covariance matrix between the different

dimensions a diagonal matrix. Thus, PCA determines the matrix W to transform each

vector:

y = Wx (41)

where y is the transformed version of x. The PCA transform makes the underlying

variability of the data orthogonal. However, the underlying data in each vector is the same.

PCA also usually orders the new indices of the vectors by variability beginning with the

largest variability. This is the same as ordering the covariance matrix to have the larger

covariances be on the upper left.

An additional part of the PCA transform can be to whiten the data. Whitening

forces all the variances to be the same magnitude. This addition to the transform makes

the covariance matrix contain all ones as well as be diagonal. PCA can be used as

an unsupervised learning technique to reduce dimensionality of data while maintaining

variability [43]. PCA applied to the input data also makes training easier for ANNs. When

all the variability in the input is made orthogonal, an ANN can more quickly determine

what changes in the input are related to the output. Thus PCA can be applied to input as a

preprocessing step to speed up learning for certain machine learning problems [43].
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k-Means Clustering

k-Means clustering is an algorithm that attempts to classify n observations of some d

dimensional space into k groups [30, 29, 43]. Each group k is centered on a point which

serves as a prototype for that cluster k. All the observations are assigned a cluster by

determining the closest prototype to that observation using some distance metric. The

equation for the Euclidean distance metric is:

arg min
S

k∑
i=0

∑
x∈S i

||x − µi||
2 (42)

where S is the set of cluster prototypes for the k clusters, x is a vector in one of the

clusters, and µi is the mean vector of the ith cluster. The cluster prototypes are chosen in

order to minimize the distances between the observations and their closest prototype. The

minimization of the distance between cluster prototypes and the members of the clusters is

usually done with an iterative algorithm. First, cluster prototypes are randomly initialized.

Next, the members of each cluster are determined by the closest cluster prototype to the

sample vector. Then the cluster prototype is moved to the mean of the current members of

the cluster. Next, the cluster members are determined again with the new cluster prototype.

Calculating the new mean, moving the cluster prototype, and determining members repeats

until the cluster members do not change between iterations. However, the final cluster

prototypes may be a local minimum. Thus, the algorithm repeats the overall algorithm

starting with determining random cluster prototypes. The overall algorithm is repeated and

the final set is the final cluster prototype set that occurred the most often.

The cluster prototypes partition can be represented by Voronoi cells using the center

points of each cluster [88] (or polygon in 2D space). This dissertation uses k-Means

clustering to turn a continuous output into a discrete output. The k-Means algorithm is

applied to the output position space and labels each output point as belonging to one of the

clusters. k-Means has now transformed the output position space from continuous position
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to discrete position bins. The discrete binned output may make training easier for certain

data sets on certain machine learning problems [43].

Recurrent Neural Networks

In the simple form of a MLP ANN, the network is strictly a feed forward network

[38, 24, 62]. Thus, feed forward networks make directed acyclical graphs. The MLP

information must flow from the input layer to the output layer. A Recurrent Neural

Network (RNN) removes this restriction and allows networks to make connections which

will create cycles as shown in Figure 4. With cycles it is possible to return to a starting

point after traversing other perceptrons. This introduces a memory or state to the neural

network. For example if a perceptron has as an input its own output, then it must remember

the last output in order to use it as an input. This output value from the last time step must

be stored in memory for the next time step. Thus the stored value will change the output

even with the same inputs to the overall RNN. The previous memory or state of the ANN

is denoted as hNN
k at time step k. The previous state makes the ANN equation:

yk = aNN(xk,hNN
k−1|θ) (43)

This is the equation for general ANN with function aNN which is parameterized by θ. Note

that he inputs xk and outputs yk now have time indices k because the order in which the

inputs are given will change the outputs. The output equation for this one layer would be:

yk = Wlxk + b + WrhN Nk−1 (44)

where the RNN layer has weights Wl,Wr and biases b, and hN Nk−1 is the output of the

layer at the previous time step. While arranging RNN into layers is common, RNNs can

take on many more architectures because they are not forced to be feed forward networks.

Keeping a state now makes every output dependent on the entire history of inputs which are

compacted into the previous state of the RNN. This allows a RNN with enough perceptrons
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Figure 4: Left – the architecture for a feed forward neural network given for reference.

Right — a recurrent neural network network. Note a cycle is created from the concatenation

of the output of the layer and the input of the same layer.

or capacity to become a function which maps from any given input sequence to output

sequence. This is analogous to how a feed forward ANN could become a function to map

any input to any output [38]. Once again the real problem is how to train such a network to

be the function we desire.

RNNs have an added complication now because they have a time dependence. When

applying a derivative to the network with respect to the weights, the chain rule must be
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applied back in time to determine how the previous inputs changed the current output.

Applying the chain rule through the full time dependence to update weights is referred to

as Back Progatation Through Time (BPTT). This repeated chain rule causes one of two

problems, the vanishing gradient problem [35, 38] and the exploding gradients problem

[26, 60]. While these problems do exist in feed forward networks, the problem is amplified

in RNNs. In feed forward networks the problems arose because the back propagation

algorithm had to propagate through many layers. In the RNN, the back propagation

algorithm has to flow through layers and time steps. The more time steps the network

operates on, the more likely the gradient is to vanish or explode. This is because the chain

rule will compute longer and longer products depending on how far back the in time the

chain rule has been applied. The final value of these products has a tendency to vanish to

zero if the weights are less than one or explode to very large numbers if the weights are

greater than one. The exploding gradient problem can be mitigated by making a maximum

gradient value and clipping all larger gradients to this maximum number [95]. However,

if the gradient vanishes then it cannot be recovered. This leads to a central problem in the

supposed power of RNN which is their ability to learn output sequences on the full history

of inputs. If state information is lost over time, then the RNN has lost the ability to relate

past inputs to current inputs when the time separation is too large [24]. In order to solve

this problem, specific architectures of RNNs have been developed such as Long Short Term

Memory.

Long Short Term Memory

LSTM is a type of RNN architecture created to overcome the vanishing gradient

problem and achieve very long term dependencies in parsing input sequences [35, 84]. The

key component of LSTM networks is the addition of gates to modify data stored in LSTM

memory cells. A gate is an MLP layer with a sigmoid output. This forces all the gate

output to between 0 and 1. The gates are used to determine what memory cell data should
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be passed through the gate and what data should be erased. Gate operations are done by an

element wise multiplication of the memory cells and the gate output. The LSTM also has

a standard MLP layer called the input MLP which determines what to add to the memory

cells. We denote the size of the LSTM layer as the number of the memory cells which

matches the sizes of the input MLP and gate ANNs. For example, if the LSTM has size

of 10, then there will be 10 memory cells, and thus the gates and input MLP will output

10 values, one for each memory cell. The standard LSTM architecture has three of these

gates called the forget, input, and output gates as shown in Figure 5. Each gate and the

input MLP take as an input the current LSTM layer input xk and the output yk−1 of the last

time step. The forget gate determines to what amount fk the LSTM should forget the value

of the memory cells. The second gate is the input gate. The input gate produces a filter ik to

filter the output of the input MLP c̃. This filtered output from the input MLP is then added

to the memory cells. The memory cell is then put through a tanh to become the output of

the LSTM. However, before the output is passed outside the LSTM block, the output gate

filters the memory cells. This is now the final output of the LSTM which is the passed on

to the next layer and fed back as input to the gates and input MLP. The full equations for

the LSTM are:

fk = σ(W f [xk ⊕ yk−1] + b f ) (45)

ik = σ(Wi[xk ⊕ yk−1] + bi) (46)

ok = σ(Wo[xk ⊕ yk−1] + bo) (47)

c̃ = tanh(Wc[xk ⊕ yk−1] + bc) (48)

ck = (ck−1 � fk) + (ik � c̃k) (49)

yk = tanh(ck) � ok (50)

In these equations, xk, yk are the input and output vectors of the LSTM at time

step k, fk, ik, ok are the outputs of the forget, input and output gates at time step k,

37



Figure 5: One LSTM layer broken into its component parts. The overall blue rounded

rectangle is the LSTM layer. The blue rectangles are the forget, input and output gates. The

red rectangle is a standard MLP layer. The + and × symbols denote element-wise addition

and multiplication while the ⊕ symbol denotes vector concatenation. The z−1 denotes a

delay of the value between time steps.

W f ,Wi,Wo,b f ,bi,bo are the weights and biases of the forget, input and output gates, c̃

is the output of the input MLP, Wc,bc are the weights and biases of the input MLP, ck is

the state of the memory cell at time step k, ⊕ is vector concatenation, � is element wise

multiplication, and σ is the sigmoid function.
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One of the most important changes to the architecture is how the previous state and the

input are combined. In a general RNN architecture, the previous state would be multiplied

by weights before replacing the old state value. The LSTM architecture only multiplies

the state memory cells by gate outputs which are limited to between 0 and 1. The LSTM

can only increase the state memory cells value with addition. This addition prevents the

vanishing gradient problem from shrinking or exploding the gradient, because there is no

longer a product to be calculated. As Back Progatation Through Time follows the state

value from one time step to the last, there is no longer an ever expanding product but a

simple summation. This is one of the key advancements that enabled training to make the

LSTM architecture remember states for many time steps [38].

Other types of LSTM architectures exist with various slight changes [13, 22, 107].

One variation is to change the inputs to the gates by adding the current cell state as an input

[22]. These are called peephole connections which allow the gates to determine what to

forget, input, or output based on the current cell state. Other variations combine the input

and forget gates to make what is called a Gated Recurrent Unit (GRU) architecture [13].

The idea with GRU is that forget and input need to work together to forget something and

then put something else in its place. The input MLP activation function of the LSTM is not

required to be a tanh function. However, the gates must have a sigmoid activation functions

in order to maintain an output range between zero and one. While many types of LSTM

architectures exist, the core elements stay the same. The gates forget or keep information,

and the current state is updated with addition. This core idea allows the LSTM architecture

to connect state information over many time steps to achieve high performance in sequence

processing compared to simple RNN layers.

Residual Connections

Residual connections used in residual neural networks or ResNets were first

introduced by [34] and later improved by [33]. The basic idea of a residual connection
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is to add skip connection that bypass a layer or layers or an ANN and skip to a later part in

the network. The skip connection is combined with this output from a later layer usually

with some kind of addition. This allows the layers that were skipped to learn the residual

values between the original input. Simply put the concept is that it may be easier to learn

the change from some input to an output instead of the output directly. The advantage of

this is that the skip connection allows the gradient to easily reach layers far from the output

layer and still contain useful information alleviating the problem of vanishing gradients.

This enables training very deep networks much easier compared to standard networks with

no residual connections. In the simple case where the skip connection matches the output

in size the equation would be:

yl = xl + fNN(xl, θ) (51)

xl+1 = yl (52)

where yl is the output of layer l, xl is the input to layer l and fNN(xl, θ) is some layer of

an ANN with weights θ. Thus the output of the ANN layer is added to the input to obtain

the final output which is the input to the next layer. Note that if the size of xl is not the

same size as fNN(xl, θ) then some method will be required to combine the two vectors into

an output vector yl. Different methods exist from padding the smaller vector to the larger

vector size, or introducing a dense MLP layer or 1D convolution layer to resize one of the

vectors. In summary residual connection allows training much deeper ANN compared to

standard feed forward ANNs.

Teacher Forcing

When training a RNN there is a class of problems where the output at the last time

step is used as an input for the next time step. An example of this is an equation of the

form:

yk = f(yk−1, xk|θ) (53)
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where the output yk at time step k is a function of the last output yk−1 and some input xk

at time step k. When output estimates are used to predict future output in an ANN this

equation becomes:

ŷk = fNN(ŷk−1, xk|θ) (54)

where the output is replaced by the estimates of the output. In this case, an ANN will be

trained to determine the function fNN using an optimizer to compare the true output with

the estimated output. The ANN will be trained with data from the true output values y and

inputs x. Clearly, the estimate at future time steps k1 > k0 depends on past estimates from

Figure 6: Global Feedback method of training an ANN. Note that the previous estimate

from the last time step is concatenated with the current input to predict the output at the

current time.

time k1 ≤ k0. When the ANN has a poor estimate of fNN , the future estimates of y will be

very poor. The poor estimates of y will make it very difficult for the ANN to train using all
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the available supervised output. This is because we do not expect the ANN to have such

poor estimates of y for all the training data points when training is complete. Rather, we

expect that when the ANN is fully trained, our estimates are very good, and we want to train

using these better estimates. Using the last estimated state in this manner is called Global

Feedback (GF) [77], as shown in Figure 6. Teacher Forcing (TF) uses the last true output

Figure 7: Teacher Forcing method of training an ANN. Note that while an estimate of the

last time step is made the true output at the last time step is concatenated to the current

input to predict the current output.

yk−1 as an input, instead of the last estimated output ŷk−1, as shown in Figure 7 [38, 46, 32].

This allows the ANN to train much more quickly, because all the training samples now

have good inputs which are close to the true values. This will make a much better current
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output estimate especially early in training when the estimate is poor. However, this can

create problems with the training. For example, if the ANN is stable with teacher forcing,

it may not be stable when the ANN is used in practice and global feedback is used instead.

Another problem is if the ANN pathologically uses only the true last output and no other

input to determine the next output. In our example, this would be like ignoring the inputs x

and relying only on the output y. This will create problems when the truth is replaced with

the estimates, and the ANN drifts from the truth and cannot correct the drift.

Different techniques can be used to combat the problem of over fitting to the true data.

The first is to only use teacher forcing for some beginning time steps and then move to

global feedback. This allows the ANN to jump start with perfect input and then have to

correct itself to work with its estimated outputs [77].

In short, teacher forcing is a training technique used when the inputs to an ANN

contain some of the outputs it estimates. This type of ANN will show up when the

ANN mimics certain filter functions that use estimates as input such as state prediction

or propagation functions.

Stratified Training

One problem of some datasets is when class samples are very unequally distributed.

When training using a loss function the optimizer will exploit the classes that occur less

and not prioritize their accuracy in order to focus on classes that occur more frequently.

This leads to an undesirable property where classes that occur less have an artificially low

accuracy at the cost of high accuracy in other classes.

Another problem that occurs more acutely in online training but also in off line training

is recency. Recency is when the optimizer make large weight changes in response to new

data at the cost of older data. In this case the recent data has good performance but older

data now has worse performance.
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In order to alleviate these two problems, the training samples are often stratified so

the class samples appear about equally in a batch [44]. In RNNs each training sample is

a sequence of samples. Thus each batch should be stratified across sequences. Sometimes

there many be only a few but long sequences. This creates a stratification problem where

each batch can be skewed towards a certain class. To combat this problem, each sequence

is reordered to guarantee class diversity over a batch. This approach in effect can shuffle

the sequences since they may no longer occur in their natural order. This is similar to

Multistream in [32] where the sequences were randomly shuffled but no guaranteed to be

have diverse output.

Mixture Density Networks

Mixture Density Networks are a special kind of ANN that outputs the parameters for a

mixture of distributions to create a probability distribution [7, 103, 86, 25]. The basic form

of the MDN is as follows:

zi = f (xi,w) (55)

Where f is the MDN function evaluated with weights w at the ith input sample x. The

vector zi represents the parameters of the distribution for the ith sample calculated by the

MDN. An MDN minimizes the negative log likelihood of the probability of the output

distribution at the target output over all the targets as shown:

L =

N−1∑
i=0

− ln
(
p(yi|zi)

)
(56)

where L is the loss function, N is the total number of samples and yi is the true target

output for the ith sample. Thus, the MDN is attempting to maximize the probability of each

target for its given parameters across all samples. Since our parameters are a function of

the inputs, this in effect will allow the MDN to approximate the probability of the output

target given the input denote as p(y|x). However, this loss function in Equation 56 is more

general than required because we are specifically interested in mixture density networks, so
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we can rewrite Equation 56 with mixtures:

L =

N−1∑
i=0

− ln

M−1∑
j=0

w j p(yi|zi
j)

 (57)

where we have now explicitly called out the weight parameter w j of each set of M

parameters calculated by the MDN. The sum of the weight parameters must be one and

is usually enforced by a softmax function. The parameters from the MDN are broken into

parameters for each jth mixture as zi
j. Thus, for each mixture distribution, the probability

of that set of parameters is calculated and then weighted for that specific mixture. This is

now general enough to allow any number of mixtures of any type of distribution. However,

this dissertation focuses specifically on MDNs that output Gaussian or normal distribution

parameters.

Gaussian Mixture Models

GMMs provide a parameterized method to define distributions which can take on

different shapes such as multi-modal distributions. GMMs use a number of different

Gaussian distributions added together to represent one full distribution. The equation for

the probability of a Gaussian Mixture Model is as follows [21, 27, 83]:

p(y|{w0...M−1,µ0...M−1,Σ0...M−1}) =

M−1∑
j=0

w jN(y|µ j,Σ j) (58)

M−1∑
j=0

w j = 1 (59)

N(y|µ,Σ) =
exp

(
−1

2 (y − µ)TΣ−1(y − µ)
)

(2π)D/2
|Σ|1/2

(60)

where D is the number of dimensions estimated by each of the M Gaussian mixtures, µ j

is a vector of the means in each dimension, and Σ j is the positive semi-definite covariance

matrix between each dimension. The subscript j refers to the mean or covariance of the

jth mixture. The target vector y is the point whose probability will be evaluated. Each

Gaussian distribution is given a weight w j with the condition that all the weights sum to
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one as shown in Equation 59. This allows the summation of the probability from all the

Gaussian distributions to be one valid probability distribution. To calculate the probability

of an output, each Gaussian distribution would return its own probability using its own

mean µ and covariance matrix Σ, then each of those probabilities would be weighted by the

weights.

The MDN will output these parameters to parameterize the GMM:

z =

[
µ0 Σ0 w0 µ1 Σ1 w1 . . . µM−1 ΣM−1 wM−1

]
(61)

where all the parameters of the Gaussian distribution have been flattened into a single vector

which is outputted by the MDN. This now leads to a general GMM loss function of:

LGMM =

N−1∑
i=0

− ln

M−1∑
j=0

wi
j p(yi|µi

j,Σ
i
j)

 (62)

In general the covariance matrix Σ has dependent terms and thus can be expressed with

fewer terms than the full matrix. This reduces the total number of terms in z as follows.

For each distribution in the GMM there are D means, D(D + 1)/2 independent terms in

the covariance matrix (due to symmetry), and one weight for a total of D(D + 3)/2 + 1

parameters. Thus, the entire distribution has a total of MD(D + 3)/2 + M parameters.

This dissertation focuses specifically on MDNs that output GMM parameters. While

the parameters for a GMM are above, the MDN may not determine those parameters

explicitly but an equivalent representation that makes computation easier. Thus, the actual

parameters determined by the MDN are dependent on the loss function used by the MDN

to evaluate the target output for that probability distribution. For example, Graves et al.

[24] does not estimate Σ directly but instead uses a parameterization where the MDN

determines standard deviation σi for each i dimension of the possible D dimensions as well

as the correlation coefficient ρi, j between each combination of the ith and jth dimension.

Finally, these parameters are repeated M times for all M mixtures. As stated above, to

parameterize the distribution we require a covariance matrix Σ which can be determined by
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the parameters σi and ρi, j as follows:

Σ =



σ2
0 σ0σ1ρ0,1 σ0σ2ρ0,2 ... σ0σ jρ0, j

σ1σ0ρ1,0 σ2
1 σ1σ2ρ1,2 ... σ1σ jρ1, j

... σ2σ1ρ2,1
. . .

. . .
...

...
...

. . . σ2
i σiσ jρi, j

σiσ0ρi,0 σiσ1ρi,1 ... σiσ jρi, j σ2
i


(63)

where i, j is the row and column index respectively and ρi, j = ρ j,i and each ρ is limited to

the bounds of [−1, 1], also each σ is restricted to be strictly positive.

These restrictions are enforced by an activation functions at the last layer of the MDN.

The ρ values are put through a tanh function and the σ value are put through an exp

function. Also the weights are put through a softmax function [9] to ensure the weights

sum to one. These activation functions force the GMM parameters to produce a valid

probability distribution that will integrate to one.

This form from Graves is straightforward to understand and directly calculates values

of interest. However, this form may have numerical computation difficulties when

implemented. For example, the probability equation for a GMM uses the inverse of the

covariance matrix Σ−1. Thus Σ must be inverted for each parameter set for every calculation

of probability.

Inverting the covariance matrix is a costly calculation. Thus, in this dissertation we

use an inverse covariance form in [103] to represent Σ. This form uses an upper diagonal

matrix A to hold the independent values used to calculate Σ. The A matrix is multiplied by

its transpose to determine directly an inverse covariance matrix as follows:

Σ−1 = AT A (64)

where the diagonals of A are forced to be strictly positive by applying the exp function to

each diagonal as the final activation of the MDN. The resulting Σ−1 matrix is guaranteed to
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be positive semi-definite and thus have an inverse [103] (as long as none of the diagonals

of Σ−1 become exactly zero). Thus we can calculate Σ if desired. The advantage is that

Σ−1 can be used directly to determine probabilities for the GMM in Equation 58 which

reduces the computation required to invert the matrix for every probability calculation. If

the diagonal is guaranteed to be strictly greater than zero, then Σ−1 is guaranteed to be

positive definite. However, numerical precision may round exp x to zero for large negative

x and thus create a positive semi-definite matrix.

With the ability to construct valid covariance matrices, an ANN can be trained to

develop a full parameterization of a GMM. This allows an ANN to output different

probability distribution for a multidimensional random variable. This covariance training

can also be used to determine covariance matrices for other problems, for example the

covariance matrix of a Kalman filter.

State of the Art ANN Integration

This section outlines the history of integrating ANNs into filters. State estimation and

filtering theory have incorporated ANNs for many different purposes since ANN interest

started returning in the later 1980s and early 1990s. These different integration methods

will be directly fit into the overall architecture outline in Chapter III. At the end of Chapter

III the history will be revisited to show exactly how previous integration fits into the overall

architecture.

The initial use of ANNs for state estimation and filtering theory was interested in

system identification as found in Chen et al. [11] and Narendra et al. [70]. By system

identification, the research sought to model the system dynamics or state predict equation

with ANNs. In equation form this is:

x̂k|k−1 = f(xk−1,uk)→ x̂k|k−1 = fNN(xk−1,uk) (65)
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where f() is some informed system dynamics based of prior knowledge, and fNN() is some

ANN trained on empirical data to minimize the propagated state error. This continues to

be a topic of interest as shown by various implementation in Dreyfus et al. [19], Ljung et

al. [63], Elanayar et al. [20], Puskorius et al. [79], Sastry et al. [85], Szilas et al. [96],

Moon et al. [68], Ngia et al. [72], Mandic et al. [64], Rajesh et al. [81], Lee et al. [59], and

Almonacid et al. [4]. Many different kinds of ANNs such as RNNs [59] and are used with

different learning techniques like online and offline learning. The goal of these methods is

to achieve better performance modeling the system dynamics with an ANN.

Shortly after modeling the system dynamics was started, modeling of the entire filter

with an ANN began. Early filter ANN modeling started with Nerrand et al. [71], followed

by Ting-Ho Lo [99], and then Teissier et al. [98]. In equation form this distinction is:

x̂k = s(xk−1,uk, zk)→ x̂k = sNN(xk−1,uk, zk) (66)

where s() is some informed filter model based on prior knowledge, and sNN() is some ANN

trained on empirical data to minimize the filtered state error. Recent interest from the state

estimation and filtering communities is shown in Wilson et al. [105] and Draganov [18].

Recent interest in modeling filters as ANNs exploits the work done by the machine learning

community that has made RNN and ANNs in general much easier to implement and train.

Usually the goal of these methods has been to improve the final filter performance by

modeling the filter as an ANN [99]. However, Draganov [18] used an ANN to condense a

detailed particle filter with many states into a more lightweight implementation.

Along the same idea of modeling the system dynamics or filter as an ANN, Parlos et

al. [77, 76] developed a decomposed ANN filter model where ANNs model functional

components of filters. While the early research on system identification continued to

refine developing propagation equation, Parlos et al. also replaced the measurement update

equations with ANNs. In equation form this looks like

x̂k = mu(xk|k−1, zk)→ x̂k = sfNN(xk|k−1,hNN(xk|k−1), zk) (67)
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where mu() is some informed filter measurement update based on a known filter, hNN()

is an ANN trained to predict measurements from the current state and sfNN() is an

ANN trained to filter the state based on the current state, measurements, and predicted

measurements from hNN(). This decomposition allowed the ANN to determine how to

filter the measurements in order to improve the current state estimate. Further research

implemented this idea for other purposes such as Rajagopal et al. [80] and Srinivasan et al.

[91]. However, this dissertation in Section III will further break down the network put forth

by Parlos et al. using non-linear filtering theory. The objective of the decomposition is to

gain a theoretical backing for a specific architecture. Also, the ANNs in the decomposed

architecture should be easier to train because the ANN goals are as specific as possible.

While research continued in modeling functions with ANN equivalent functions, other

research sought to maintain standard filters and allow ANN to only provide corrections.

Instead of replacing standard filter functions with ANNs, the filtering community

started to augment the filters with ANNs. In contrast to the early work which let the

ANN become the system dynamics, neural network aided filters start with known equations

and aid or correct the state estimate with ANNs. Early work in aiding the filters added a

correction term to the filter state output. This allows the user to have a standard filter base

with small corrections applied by an ANN to improve performance. In equation form this

is:

x̂k = FILTER(xk−1,uk, zk)→ x̂k = FILTER(xk−1,uk, zk) + FILTERNN
c (xk−1,uk, zk) (68)

where FILTER() is some informed filter model based on prior knowledge, and FILTERNN
c ()

is some ANN trained to minimize the error between the estimated state and the true state.

Chin et al. [12] contributed some of the early research in this approach to improve filters

for multi target tracking. This type of integration is also shown in Vaidehi et al. [100],

Bhattacharya et al. [6], Jwo et al. [47], Yu et al. [108], Li et al. [61], and Katayama et

al. [53]. While the filter state is corrected at each time step, all the research listed does
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not use the corrected estimate as the starting point of filter for the next time step. This

means that the ANN corrected state is only given to the user. The filter only works with the

uncorrected state in the state dynamics and measurement update functions. Some papers

are unclear if the correction is only applied to the output, but no paper explicitly shows the

corrected state as the initial state of the next time step for the filter.

Another example of augmenting a filter with an ANN is to correct the state predict

equation of the filter. This narrows down the scope of what the ANN can correct and can

be applied to state estimation where filters are not used. In equation form this is:

x̂k|k−1 = f(xk−1,uk)→ x̂k|k−1 = f(xk−1,uk) + fNN
c (xk−1|k−1,uk) (69)

where f() is some informed system dynamics based on prior knowledge and fNN() is an

ANN trained to aid or correct the errors from f() to minimize the error between the state

estimate and true state. Stubberud et al. [93] contributed early research into this type of

ANN integration. Interest in this topic continued with many different publications such

as Horton et al. [37], Zhan et al. [110], Choi et al. [14], Xu et al. [106], Talebi et

al. [97], and Kang et al. [52]. There is a nuanced difference between the filter output

correction and state predict correction. Both corrections change the overall filter output

but in slightly different ways. Correcting the filter output can correct errors introduced

by the measurement update, while the system dynamics correction must still be updated

by measurements. Also, correcting the filter output is usually not fed back into the filter.

However, system dynamics corrections do improve the internal filter state.

The next method outlined in this dissertation is to process measurements with an ANN.

In general this applies to any measurements that are processed by ANNs before being

used in a filter. However, this dissertation is specifically interested in situations where an

ANN transforms measurements a filter cannot incorporate into measurements the filter can

incorporate. In equation form this would look like:

zk = z f
k → zk = z f

k ⊕mNN(zu
k) (70)
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where z f
k are measurements a filter understands how to incorporate, and mNN() is an ANN

trained to transform measurements the filter cannot incorporate zu
k , into measurements a

filter can incorporate. The filter now has more measurements to update the state estimate.

An example of this is in Haarnoja et al. [28](2016) where ANNs use differenced images

from a camera to provide velocity estimates to a filter. The filter used by Haarnoja et

al. could not incorporate differenced images but, the filter could incorporate velocity

measurements. While using ANNs to determine velocity from images has a long history

such as in Hatsopoulos et al. [31], it has only been recently that the ANNs have been trained

specifically to transform measurements filters cannot incorporate into measurements filters

can incorporate.

Another type of ANN aiding is in adaptive filtering. Adaptive filtering tunes

parameters of a filter as measurements are taken [102]. Different optimizing schemes

can be used to tunes parameters, one of which is with ANNs. Stubberud et al. [94]

introduced a Neural Extended Kalman Filter for general purpose filtering. An application

of ANN adaptive filtering is from Jwo et al. [49][48] who used adaptive filtering for GPS

positioning. Krishnan et al. [57] also applied a deep Kalman filter to improving health care.

Another integration method popular in the state estimation community is the EKF

optimizer introduced by Singhal et al. [89]. In this EKF the weights of the ANN are treated

like states in the filter. The system equations are as follows [32]:

wk+1 = wk + qw
k (71)

z = hNN
k (wk,uk,hNN

k−1) + vk (72)

where w is the weights of the ANN, q is white noise corrupting the weights with covariance

E[qw
k qw

k
T ] = Qk, z is a measurement of the desired output, hNN() is the ANN function

that predicts the output, hNN() is the state of the ANN, and v is white noise corrupting

the measurement prediction with covariance E[vkvT
k ] = R. This system filters incoming

measurements of the output z with an EKF. The covariance of the state is estimated in
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the matrix Pw
k . The Jacobian H matrix is calculated by using back propagation on each

output value in hNN
k () with respect to each weight in w. This allows the EKF to calculate

the Kalman gain K and thus update the weights and covariances with Equation 10. This

optimizer becomes more useful to filtering theory when the state vector includes weights

as well as other states of interest such as position. When non-weight states are included,

the algorithm estimates the propagation of those states as an ANN:

wk+1 = wk + qk (73)

xk+1 = fNN
k (x,uk,wk) + qx

k (74)

z = hNN
k (xk,wk,uk,hNN

k−1) + vk (75)

where fNN() is the state predict equation for the states, and u is the system input. There is

also a new noise term qx
k where E[qx

kqx
k

T ] = Qx
k . The weights are propagated in the same

manner as before, but a new state predict equation is trained to predict future values of

the states. The addition of the new states also means a new covariance matrix is required

for the states Px
k . While the covariance propagation equation for the weights was simply

Pw
k = Pw

k−1 + Q, the propagation update for the states now has to linearize the propagation

equation:

Px
k = FPx

k−1FT + Qx
k (76)

where F = ∂fNN

∂x is the Jacobian of fNN(). In this form there are essentially two different

Kalman filters running. One filter optimizes the weights for fNN() and hNN() while the

other filter estimates the states. If interaction between the weight and states is desired, the

two filters can be combined:

[xk+1 ⊕ w] = fNN
k (x,uk,wk) + qk (77)

z = hNN
k (xk,wk,uk,hNN

k−1) + vk (78)

where fNN
k () now predicts the weights and states and qk contains the noise terms for the

weights and states. Also there is now only one covariance matrix Pk for both the weights
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and states. The combined covariance matrix can now expresses how the weights and states

interact. The filter propagates and updates the weights and states using measurements z.

The EKF optimizer has found many applications such as in Iiguni et al. [39], Puskorius et

al. [79], Stubberd et al. [93, 94], Zhan et al. [110], Rajesh et al. [81], Kang et al. [51], and

Lee et al. [59].

This dissertation brings the different research implementations of integrating ANNs

and filters into one common framework. This makes it simpler to understand the ways that

ANNs can work with filters. This also makes it easier to compare different implementations

without delving into implementation details. There may be other nuanced ways that ANNs

are used for filtering but this section outlined the major research thrusts.

VLF Spectrum

The framework and methodology described in Chapter III are general enough to apply

to any time varying signal. The specific case of VLF electromagnetic spectrum was chosen

for unique properties which can showcase the strength of the framework and methodology.

This section will outline properties of the VLF spectrum which play key roles in position

estimation. The first property is that at VLF frequencies the noise in the VLF band is much

larger compared to higher frequencies. There are many noise sources in the VLF spectrum

as noted in [90]:

1. Radiation from lightning discharges including local weather and weather around the

world

2. Unintentional man made radiation from electrical equipment, electrical and elec-

tronic equipment, power transmission lines, or internal combustion engine ignition

3. Radiation from atmospheric gases and hydrometeors (water in the air as rain or water

vapor)

4. Radiation from celestial radio sources
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This increased noise means a transmitter must have a much higher signal power to

overcome the noise in the VLF spectrum compared to transmitters at higher frequencies.

This increased power in the received signal will in most cases be much larger then the

Johnson noise in the receiver [41]. This allows receive antennas at VLF frequencies to

have low gain, since the transmitted signal is already at high power. The power is actually

high enough to be processed by a receiver without the internal receiver noise significantly

degrading the signal to noise ratio. The International Telecommunication Union (ITU) has

compiled noise figure measurements at low frequencies for communications equipment

design [42]. The noise figure measures the loss of signal due to a the signal to noise ratio.

Higher noise figure indicates more noise sources which will contaminate a transmitted

signal. The noise figure measurements are broken up into two different bands: frequencies

below 10 kHz (Figure 8) and above 10 kHz (Figure 9).

In both bands the noise figure increases as the frequencies get lower. The noise figure

allows a calculation of the expected noise power at a given frequency:

fa =
pn

kt0b
(79)

where fa is the noise figure, pn is the available noise power, k =1.38 × 10−23 J/K is the

Boltzmann’s constant, t0 = 290 K is the reference temperature in Kelvin, and b is the noise

bandwidth of the receiver. With this equation we can determine the power at a given noise

bandwidth.

The high noise power at VLF frequencies also makes it resistant to noise jamming.

Noise jamming attempts to raise the noise floor of a frequency band to drown out a

transmitted signal. In order to transmit this jamming signal at a power high enough to

compete with the noise, a high power antenna with large gain is required since the noise

in the spectrum is so high already. For example, the National Institute of Standards and
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Figure 8: Noise Figure Fa measurements from the ITU at frequencies below 10 kHz. Note

the downward trend as frequency increases. A is from micro pulsations, B is the minimum

values expected of atmospheric noise and C is the maximum value expected of atmospheric

noise. Figure found in [42]

Technology (NIST) WWVB antenna transmits a 60 kHz signal across the United States

from Colorado. However the antenna consists of four 122 m towers spaced 857 m apart to

suspend a T-antenna. The antenna also only transmits in a small frequency band around

60 kHz.

Next, a transmitter range equation will be evaluated based on this noise to show the

short range of low power transmitters at VLF frequencies. First we give the equation for

electromagnetic propagation [69]:

S =
PtGtAe

4πR2 (80)
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Figure 9: Noise Figure Fa measurements from the ITU at frequencies above 10 kHz. Note

the downward trend as frequency increases. A is atmospheric noise values exceeded 0.5%

of the time, B is atmospheric noise value exceeded 99.5% of time, C is man made noise at

a quiet receiving site, D is galactic noise, E is the median for man made noise in a business

area. The solid line is the minimum noise expected. Figure found in [42]

where S is the power at the receiver input, Pt is the power of the transmitter, Gt is the

antenna gain of the transmitter, Ae is the effective area of our antenna with the wavelength

taken into consideration, and R is the distance from the transmitter to the receiver. Ae is

how much area of the radiated power our antenna will be able to absorb. This can be

thought of how large electronically our antenna is. Larger antennas will in general be
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larger electronically but that is not always true. S is the power that will be compared to

pn in Equation 79. When a desired SNR sn is set, the maximum distance Rm at which the

signal will still be acceptable over the noise figure can be calculated by substituting the

receiver power S with minimum signal power above noise pnsn:

Rm =

√
PtGtAe

fakt0bsn4π
(81)

In this equation, Rm is the maximum range at which the SNR will still be at least sn. Using

the noise figure numbers from Figure 9 and 8 and setting power, gain, and signal to noise

ratio a plot of resulting maximum range is shown in Figure 10.

From Figure 10 the range expected from transmitters with power of 10 W and 10 Hz

bandwidth and unity transmission antenna gain and a receive antenna electronic size of

1 m2 is on the order of tens of meters to hundreds of meters depending on frequency.

The power, gain and antenna constants were chosen based on engineering judgment to

be plausible and are not empirically derived from any real transmitter. This range is based

on the stated power of the transmitters gains and noise figure measurements from the ITU.

This dissertation assumes that local transmitters are close and powerful enough to be picked

up by the antenna used in the experiments.

Literature Review Summary

In summary this literature review addressed four main topics of importance. The first

topic provided a background on state estimation outlined the different approaches with

respect to navigation. The second topic presented an overview of machine learning and

ANNs with a short description of the background and the models that are useful for the

problem in this research. The next section reviewed the state of the art for ANN integration

with state estimation and filters. The last section provided a background on the VLF

spectrum exploited for the experiments in Chapter V.
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Figure 10: Range of transmitters with Pt = 10 W,b = 10 Hz, Gt = 1, Ae = 1 m2. Green

line is the range based on the lower bound of the noise figure and the red line is based on

the higher bound of the noise figure.
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III. ANN Filter Architecture

This chapter proposes how standard filters and ANNs can work together to improve

performance and understanding. The first two sections outline syntax of symbols and

notation. The next section outlines how to use ANNs to replace existing filters and filter

parts. Next, methods to use ANNs to augment existing filters is outlined. Finally, a

combined framework is given which incorporates the ideas from the previous two sections

into one coherent filter framework.

Unknown System Input and Measurements

This section describes the nomenclature used in this dissertation to differentiate system

inputs and measurements. This is important, because when ANNs are used to work with

unknown data (such as VLF features), it is not obvious if the recorded data should be used

as system inputs or as measurements. Unknown data is information which is difficult to

relate to other values of interest, such as a state. The user has very little a priori knowledge

about unknown data. However is is likely that the unknown data contains information about

other values of interest. This section will outline the difference between system inputs and

measurements and how this dissertation will classify unknown data.

In control theory, system inputs are strictly values which are controllable by the

user and measurements are observed values. The purpose of the state predict function

is to propagate the state estimates forward in time until observations are made to correct

the states. Thus, the state predict equations are functions of states and system inputs

x̂k = f(x̂k−1,uk). This is because the user can control system inputs in the future and

future states can be determine from the previous state. This allows predictions to be made

indefinitely into the future. The observed values or measurements are used to adjust the

state estimate to correct errors from the system dynamics.
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In navigation, control is not a priority, and the state observer is much more important.

From this perspective, system inputs are values which naturally propagate the state forward

in time, and measurements are values which the state can naturally predict. It is not required

that the system inputs are controllable by the user, because navigation only provides the

state estimates and allows a separate entity to control the state. For example, in an aircraft

navigation problem it may be easier to use a fuel rate as a system input instead of a

measurement. This may be because fuel rate is easily incorporated into a state predict

equation. However, the fuel rate is actually measured by some sensor and is not directly

controlled by the navigation algorithm. This would be a problem from the control theory

standpoint, because fuel rate cannot be used in the state predict equation since it is not

controllable. The navigation algorithm, however, only wants to estimate the states and will

use the fuel rate as a system input in the state predict equation, because it is easier to predict

states with fuel rate than it is to correct the states with the fuel rate.

In traditional navigation problems this distinction is unnecessary, because it does not

matter if observed data is called system inputs or measurements. The user will determine

where the data is more easily incorporated. However, when an ANN is used with navigation

filters, the distinction becomes more important. When the user has data with little a priori

information, it may be useful to process that information with an ANN. However, lack of

a priori information may make it difficult for the user to label the data as either a system

input or a measurement. It is not apparent to the user if the data is more useful in predicting

the state or relating directly to the states.

Determining if unknown data is a system input or measurement is a engineering

problem dependent on how the ANN is incorporated into a filter. Testing may be required

to see where the unknown data fits best. One rule of thumb is that the unknown system

inputs and measurements should be mutually exclusive. If data is used in two different
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locations in the filter, then the filter may believe that it received two independent updates

and be overconfident in its state estimate.

When integrating a filter and an ANN, this dissertation uses the following syntax to

denote how data is to labeled. System inputs are denoted as uk and measurements are

denoted as zk where k denotes the time step. The system inputs and measurements can

be broken into two groups, system inputs and measurements which have enough a priori

information to be incorporated by a filter, and system inputs and measurements which

lack a priori information and cannot be used in a filter. The full set of system inputs and

measurements will be denoted as:

uk = u f
k ⊕ uu

k (82)

zk = z f
k ⊕ zu

k (83)

where the superscript f denotes system inputs and measurements which can be incorpo-

rated by a filter to make estimates. The superscript u represent unknown system inputs and

measurements that lack a priori information and therefore cannot be readily incorporated

into a filter to make estimates as shown in Figure 11. When a filter cannot incorporate data,

an ANNs can learn additional information that can represent the data in a form a filter can

understand as shown in Figure 12. The unknown data can now be incorporated into the

filter via the ANN in order to improve performance.

States

This dissertation will in general define a state as any possible value that can be

predicted into the future based on system inputs, measurements and/or previous state

measurements. In order to to exclude states which are irrelevant to the problem, we place

a restriction so that the state value must relate to an output of interest or another state

which relates to an output. The output function is defined as y = o(x). This distinction

is important, because when an ANN models some functions of the filter, the ANN may
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Figure 11: Filter with data which cannot

be incorporated into the state predict or

measurement update functions.

Figure 12: Filter with data which could

not be incorporated until the state predict

and measurement update functions were

changed to ANN representations (red box

outline).

develop its own states. However, these internal ANN states may not have clear meaning

to the user. This definition excludes ANN states as filter states since the relation to other

desirable states is unknown.

The estimate of the states usually requires a probability distribution, since the future

value of the states is probabilistically uncertain. When the true state is x, the estimate of that

state will be written as x̂, where the hat denotes an estimate of the true value. The estimate

may be with respect to different criteria. If a single value is desired, the estimate may be

the mean of the value. For example, a Kalman filter assumes the states have Gaussian

distributions which are fully defined by their mean and covariance. Thus the Kalman filter

calculates both a mean and a covariance matrix for state estimates.
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Instead of thinking of the Kalman filter providing the mean and covariance for each

time step, we can think of the Kalman filter as determining the parameters of a multivariate

Gaussian distribution with N dimensions. In this case we could adopt the syntax that

x̂ = µ ⊕ Σ where µ is the mean of the state estimates commonly written in Kalman filter

notation as x̂, and Σ is the covariance between the states commonly written in Kalman

filter notation as P. Our concatenated vector x̂ contains both the means and covariances

as one vector, where the first N values would be the means of the multivariate Gaussian.

The next N2 values of the vector would represent indices of the covariance matrix for

the multivariate Gaussian. The estimate of the states is no longer a single value but a

parameterized probability distribution. This representation does require explicitly declaring

what type of distribution x̂ parameterizes, but allows for a more general representation of

the distribution of the states x.

This dissertation will in general consider x̂ as some list of parameters that describes

the distribution of the states x. This means that some function written as x̂k = f(x̂k−1) is

taking the parameters that represent the distribution of x at time step k − 1 and returning

the parameters that represent the distribution of x at time step k. This function alone does

not specify what distribution the parameters represent. A distribution (such as a Gaussian

distribution or a Gaussian Mixture Model) must be explicitly declared someplace else. The

type of distribution then determines the meaning of the parameters in x̂.

ANN Filters

This section shows different approaches for using ANNs as a filter or filter parts in a

navigation solution. First, a method to make one large ANN to perform all filter operations

is defined. Next the large ANN is decomposed into different parts to perform different

functions of standard filters. The Kushner equation is used to provide guidance on the

breakdown of the large ANN filter. Finally an overview of the ANN as filter parts is given.
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ANN as Filter.

The most straightforward way to make an ANN into a filter is to give the ANN all the

system inputs and measurements a standard filter would receive along with the initial state

estimate x̂0 [71, 99, 98, 105, 18]. The ANN then predicts the state at the next time step

given this initial information. At future time steps, the ANN would use its own prediction

of the state at the last time step instead of the initial state estimate. A block diagram of this

model is shown in Figure 13. In equation form this filter is written as:

x̂k = sNN(uk, zk, x̂k−1,hNN
k−1|θ

X) (84)

ŷk = o(x̂k|θ
O) (85)

where x̂k is the estimate of the state x at time step k, uk, zk are the system inputs and

measurements at time step k, hNN
k−1 is the internal state of the ANN at the previous time step

(since this is a RNN), θX is the parameter weights of our ANN, and ŷk is the final output

which is a function of the state only through some function o(). If we assume the output is

the same as the states then the equation reduces to:

ŷk = FILTERNN(uk, zk, ŷk−1,hNN
k−1|θ

F) (86)

where FILTERNN() is one large ANN that determines the output directly based on the

inputs, measurements, and previous output.

This type of ANN may be trained using some form teacher forcing since it uses its

previous estimate as inputs. While determining the architecture of the ANN is simple,

training the ANN is much more complicated. In order to achieve low error in the final

output estimates, the ANN may require high capacity which will then require many training

examples and regularization. This is compounded by the fact that when the ANN is trained

with teacher forcing another level of complication is added to prevent the ANN from

ignoring system inputs and measurements and using only previous estimates. However

65



Figure 13: ANN used as the entire filter. The ANN takes all the system inputs and make a

state estimate based on the previous estimate and system inputs and measurements.

this filter architecture does allow the full power of the ANN to do whatever it takes to

reduce the error if trained properly.

One drawback of this method is that now the entire filter is one large black box.

Inference on how the ANN combined system inputs, measurements, and previous states

is completely lost. Additionally, this model does not take advantage of any a priori

information the user had about the known system inputs, measurements, and states. While

the filter can be trained to output covariances and probabilities of the states, we will

not know how well the ANN generalized. Lack of generalization could degrade the

performance of our final estimates when using the filter in a new environment. Thus,

the filter may have high confidence in its state estimate, but in reality the state may be

incorrect and the ANN may not have generalized well to new combinations of system

inputs, measurements, and states. This motivates the filter to be decomposed into different
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parts so the parts may be monitored individually in order to improve the level of trust in the

ANN filter. Smaller ANN components may be easier to train compared to a single large

ANN filter.

ANN as Filter Parts.

To make the ANN filter less of a black box, the ANN filter can be decomposed into

standard filter parts represented by multiple ANNs [77, 76, 80, 91]. This allows the user

to exploit research on replacing filter parts with ANN (such as the state predict function

[11, 70, 19, 63, 20, 79, 85, 96, 68, 72, 64, 81, 59, 4]) This breakdown also makes it

easier to understand what the filter does with the system inputs, measurements, and state to

determine output. There are many different possible ways to break up the filter into ANN

parts. The main research contribution into how to perform the breakdown was provided by

Parlos et al. [77]. Parlos et al. used an ad hoc method to determine what roles the ANNs

would play and what inputs they take. In their paper, Parlos et al. specifically mention how

they could have chosen different inputs to the ANNs functions. A specific instance of this

was the state filter which they wrote could include the actual measurement or the estimated

measurement, because the residual allowed the ANN to determine the other value. This

dissertation looks to the Kushner equation from Section II in order to build a theoretical

backing for the roles of the ANNs and their inputs. First we shall explain the Kushner

equation then breakout parts of the overall filter

Kushner Equation Revisited.

For reference the Kushner equation solves the filtering problem for the system

equations:

dx = f(x, t)dt + G(x, t)dw (23 revisited)

dz = h(x, t)dt + dv

where measurements z are filtered to determine corrections for states x. By grouping terms

of the Kushner equation as approximate function representations, the Kushner equation 25
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can be simplified as the change in probability dp(x, t|θFILTER,Z):

dp = fNN +
(
kNN

)T (
dz − hNN dt

)
(87)

θFILTER = {fNN ,kNN ,hNN}

fNN(p) ≈ L(p)dt

hNN(p) ≈ ĥ =

∫
h(x, t)p(x, t)dx

kNN(p) ≈ (h − ĥ)T R−1(t)p

where the Kolmogorov forward equation L(p)dt has been replaced with an approximate

state predict function fNN() to estimate the future state. The terms added to the Kolmogorov

forward equation were simplified as well. For example, the measurement estimate

has been replaced with an approximate function hNN() which makes the new residual

(dz−hNN(x, t)dt). This residual is now multiplied by a gain kNN() which is an approximation

of the previous gain value. This simplistic view is an approximation for the Kushner

equation. This view approximates the system equations containing the parameters θk from

Equation 26, into the parameters θFILTER reducing the number of functions. The functions

fNN(),hNN(),kNN() are trained to determine the probability of the states. By training these

functions to estimate the probability, they will approximate the Kushner equation true

vales. By approximating the Kushner equation, the ANN functions become a general non-

linear differential filter. These ANN functions are useful for approximating the Kushner

equation when the system equations are unknown. For example, when some combination

of f(),G(),h(),Q(),R() from the original Kushner equation are unknown, but the form of

the system almost surely follows the form for the system in Equation 23. In practice,

the ANN functions will likely not become the optimal solution expressed in the Kushner

equation, but it is theoretically possible since ANNs can in general become any function

(including the Kushner equation functions) given enough capacity [38], [36].
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We now make a further simplification by changing the output of the Kushner equation

from a change in probability to a full probability as discrete time equation. First we will

discretize time by changing continuous values like dt into discrete changes ∆t = t1 − t0 .

We use the same notation for the simplified functions as before but realize that they will be

different from their continuous time versions:

∆pt1 |t1(x, t1, t0) = ∆pt1 |t0 + kT (∆z − ẑ) (88)

∆pt1 |t0 = fNN(pk0 |k0)∆t

k = kNN(pt1 |t0)

ẑ = hNN(pk1 |k0)∆t

∆t = t1 − t0

∆z = zt1 − zt0

where pt1 |t0 means the probability at discrete time t1 given all the measurements up to time

t0. This probability is a function of both times as well as the state vector. This discrete

representation will allow us to represent this approximated version of the Kushner equation

in discrete time.

We will next assume that the time between our time steps are now fixed to some ∆t

where we now have discrete equally spaced time indices tk = k∆t, k = 0, 1, . . . ,N. We now

can refer to time indices k or k − 1 instead of specific times t0, tn. Next we will express this

equation as the full probability instead of a change in probability. To accomplish this we

add pk−1|k−1 to both sides and express our residual as not a difference in measurements but

as the measurement at time step k:

pk|k(x) = pk|k−1 + kT (zk − ẑk) (89)
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pk|k−1 = fNN(pk−1|k−1)

k = kNN(pk|k−1)

ẑk = hNN(pk|k−1)

Once again the functions are slightly different now that we are estimating the probability

at time step k and not the change in probability. The equation now looks similar to the

Kalman filtering equations outlined in Section II.

Figure 14: Standard Filter with the Measurement update function changed to explicitly

estimate the measurements based on state.
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ANN Breakdown.

If we revisit our standard filter diagram from Section II we can now break the diagram

up into parts which will represent our approximate functions. A block representation of

the first decomposition is shown in Figure 14. Our decomposition breaks the measurement

update function mu() into two different sub functions h() and sf(). The equations for the

diagram can be written with the measurement update function as:

x̂k|k−1 = fNN(x̂k−1,uk|θ
F) (90)

x̂k = muNN(x̂k|k−1, zk|θ
MU) (91)

Next we write a new equation to obtain x̂k where we break up the measurement update

equation into two parts to explicitly use an estimate of the measurements:

ẑk = hNN(x̂k|k−1|θ
H) (92)

x̂k = sfNN(x̂k|k−1, zk, ẑk|θ
S F) (93)

where the measurement update function has been replaced with the state filter function

sfNN() which takes as and additional input the predicted measurement from the measure-

ment predict function hNN(). The function hNN() explicitly predicts measurements based

only on the current state. The function sfNN() is a state filter which takes as input the

measurement estimate from the first function, the actual measurement, and current state

estimate. Thus, this state filter function uses measurements to correct the predicted state

dynamics. Note that the Kushner equation did not include system inputs u. However, this

paper will include the system inputs in the system dynamics function f(). Also, the esti-

mate of the probabilistic distribution pk of states x is represented by the parameters x̂ of

some probability density function as stated in Section III. With this we have decomposed

the measurement update equation to a form similar to the form in Parlos et al. [77]. How-

ever we will continue to decompose the state filter function further using insights from our

Kushner simplification in the previous section.
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Figure 15: Standard Filter with the Measurement update block changed to explicitly

estimate the measurements based on state. The black plus signs are element wise addition

of two vectors. The red multiply symbol is a matrix vector multiplication and not an

element wise operation.

From the Kushner equation simplification Equation 89, we note that the state filter

function is not a general function of the state, measurements, and measurement estimate

but a correction to the state estimate based on the residual. A block representation of the

Kushner equation break down is shown in Figure 15. This block diagram approximates

the Kushner equation which describes how to filter states from measurements, where the

system dynamics and update equations are non-linear and is corrupted with white Gaussian

noise. In equation form, the state filter function is now defined as a function of the residual

between measurements and estimated measurements, correcting the current propagated
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state estimate:

sfNN(x̂k|k−1, zk, ẑk|θ
S F) = x̂k|k−1 + kNN(x̂k|k−1, ẑk|θ

K)εk (94)

εk = (zk − ẑk)

where the function kNN() estimates a N × M matrix gain to apply to the residual vector εk

in order to correct the propagated state estimate x̂k|k−1. Note that kNN() is the same form as

the function in Equation 89.

With this decomposition the state predict, measurement predict, and gain functions

can each be represented by an ANN. In general we will assume that the output function is

known. We also assume that a true or high fidelity estimate of the state and measurements

are available. Now we describe how to train the ANN components.

We train the state predict function or fNN() to predict the future state based on system

inputs and previous states. Next, the measurement predict function or hNN() function is

trained to predict measurements with the true state. In order to train the kNN() function,

the estimates from the state predict fNN() and measurement predict hNN() are required. If

teacher forcing is used to train the ANN, then some method to prevent the ANN from

learning solutions that simply pass on the true state.

Also, without using the previously created fNN(),hNN() functions, the gain function

will not be able to learn the types of error committed and how to apply gain in order to

correct the estimate. The target of training the gain function kNN() is the true state after

the matrix multiply and element wise addition are completed. Thus, the training will try to

estimate a gain which makes a correction to the current state estimate in order to minimize

a loss function between the estimate and the truth.

Finally, when all three functions are trained, an overall fine tuning step can be done

starting with teacher forcing and moving to global feedback [77, 28]. This fine tuning step

trains all three functions at the same time in order for them to work together to calculate

the best final state estimate. If only overall performance is required, then the loss function
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only involves the final state estimate x̂k|k and the truth. If it is desired to still have the state

predict become more accurate, then the loss function can involve the state predict output

x̂k|k−1 as well as the state estimate after the measurement update x̂k|k. Also, the measurement

predict can be further trained to still have accurate measurement estimates, and ẑk can be

included in the loss function as well. Either way, fine tuning is done to train each function

to work together to minimize error on the loss function.

Overall this section outlined a method to use only empirical data to train ANN(s) to

become a filter. Filtering theory provided a guideline to partition a large ANN filter into

components. This section requires truth data to train the ANN(s) but does not require any

a priori knowledge of the system dynamics or measurements. The meaning of the system

dynamics and measurements is learned from empirical data by training the ANN(s). The

next section explores how to incorporate a priori information into a filter.

ANN as Filter Parts Overview.

This section defines an algorithm for the decisions to make in designing a filter

with ANN parts. The previous section went through a decomposition using the Kushner

equation and assumed all the functions would be replaced with ANNs. However, any

of the different breakdowns discussed while determining the final breakdown are valid

configurations. Also, any function at any level of the breakdown can either be an a priori

function or an ANN function. A flowchart of the algorithm is shown in Figure 16. The

flowchart outlines the decision to be made in determining the filter. First the flowchart

includes research of the current problem and obtains the current stat of the art knowledge.

The decisions in the flowchart are based on this knowledge to determine where ANNs will

be useful and where a priori methods are still acceptable.

The flowchart can produce any of the three break downs provided by Figures 1, 14 and

15. For example, by taking decisions left–left–right, we can produce the filter configuration

in Figure 1. This configuration has a state predict function and a measurement update
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Figure 16: Flowchart showing the different steps to configure ANNs as filter parts. Orange

blocks relate to the State Predict function, green blocks relate to the Measurement Update

and Predict function, and red relates to the State Filter and Gain functions. A red outlined

block is a ANN, while a blue outlined rectangle is some a priori function.
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function. However, the measurement update function has been replaced by an ANN while

leaving the a priori state predict function intact. Alternatively, we could take options

left–right–right–left to create the filter configuration of Figure 14. This configuration

separated the measurement update function into a measurement predict function and state

filter function. In this case, we choose options to replace the measurement predict function

by an ANN while leaving the a priori state predict and state filter functions. In another

example, we could choose options right–right–right–right, which creates the most specific

model in Figure 15. These choices further broke apart the state filter into a gain function

based on the Kushner Equation from the previous section. This configuration replaces

all three functions–state predict, measurement predict, and gain functions with ANNs as

discussed in the previous section. In summary, the flowchart gives steps to determine what

shape of the filter is possible and what functions can be replaced by ANNs.

When deciding which option to take in the flowchart there are a few guidelines to aid in

decision making. These guidelines are consolidated with guidelines from other integration

types in Section III. Next integration will be viewed not as replacing functions with ANN

but augments existing functions with ANN.

ANN Filter Integration

This section outlines how to augment current filters with ANNs trained with empirical

data. This section describes three different ways standard filters can be integrated with

an ANN to produce state estimates. The first method allows ANNs to correct estimates

provided by the filter. The second method allows ANNs to provide measurements for the

filter. The third method allows ANNs to change filter parameters. This integration idea

is motivated by the fact that if information about the system is already known, ignoring

it could hinder performance of an ANN-only filter described in Section III. The other

motivation is to provide a method that can use learned non-linear functions provided by

ANN while keeping a proven filter. The filters used in this section are standard filters that
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already contain their own state predict and measurement update equations. This section

only augments the standard filters with ANNs and does not change any existing state predict

or measurement update functions. If trust is lost in the ANNs for any reason the ANNs can

be removed and the original filter remains intact.

ANN Corrections for Filter.

A general method for combining a filter and an ANN is to correct the filter with an

ANN. In this sense, correcting means adding a vector, element wise, to a current estimate

in order to reduce the error. An ANN can correct three different estimates–the filter output,

the filter state estimate, and the filter state predict estimate. The simplest case is to just

correct the filter final output. Extra training considerations must be made when correcting

the state estimate and state predict estimate.

ANN Correcting Filter Output.

The first correction method uses the filter to first generate an output estimate. An ANN

is then trained to correct the error in the output of the filter [12, 100, 6, 47, 108, 61, 53].

The ANN is trained with the true error as determined by some high fidelity truth source.

The ANN correction is then added to the filter output to make a more accurate corrected

output. This corrected state estimate is then presented to the user as the final output. This

correction method has the benefit of producing a standard filter estimate at each time step in

case the ANN is believed to be untrustworthy for any reason. This can alleviate concerns

about using a “black box” function for filtering since, the regular filter output is still a

proven algorithm. The overall diagram to correct filter output is shown in Figure 17.

The filter output in equation form is written as:

ŷ′k = FILTER(x̂k−1,u f
k , z

f
k |θ) (95)

where FILTER is the filter function which gives and estimate for the output ŷ′k at time step k.

The prime is added to differentiate the filter output estimate from the final output estimate
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Figure 17: Block diagram of a generic standard filter with state predict correction

provided by an ANN. The ANN uses the previous state estimate, the system inputs and

measurements to correct the filter output. The red line denotes the ANN provided correction

which if removed falls back to the original filter.

ŷk. The output error committed by the filter is:

ỹk = yk − ŷ′k (96)

ỹ′k = ŷk − ŷ′k (97)

where ỹk is the true error committed by the FILTER() function and ỹ′k is the estimate of that

error. This true error is derived from the high fidelity truth source. The ANN is trained to
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estimate the true error of the filter ỹk calculated from:

ỹ′k = FILTERNN
c (x̂k−1,uk, zk,hNN

k−1|θ
C) (98)

where the correction term provided by the ANN ỹ′k, attempts to match the true error ỹk.

However the ANN estimate is not perfect and creates our final estimate ŷ′k. Note that the

ANN function FILTERNN
c includes as input not only the system inputs uk and measurements

zk but also the state of the filter x̂k−1. This allows the ANN to predict what the filter output

will be. The ANN uses this prediction of the filter output to calculate a correction.

The ANN uses the full system inputs and measurements uk, zk. However, the filter is

restricted to only the system inputs and measurements it knows how to incorporate u f
k , z

f
k .

Thus, the ANN correction is determined using more information then the original filter.

The ANN attempts to use this extra information to close the gap between the filter output

estimate and the true output as shown:

ŷk = ŷ′k + ỹ′k (99)

where ŷk is the final output of the integrated ANN/filter combination which is the sum of

the filter output estimate ŷ′k and the correction from the ANN ỹ′k. The final corrected filter

equation is then:

ŷk = FILTER(xk−1,u f
k , z

f
k |θ) + FILTERNN

c (xk−1,uk, zk,hNN
k−1|θ

C) (100)

where FILTER parameterized by θ is the original filter equation which is corrected by the

ANN function FILTERNN
c parameterized by θC.

This type of correction works well when the filter already has a stable output which

does not drift. The purpose of the ANN in this stable filter is only used to make slight

corrections. The corrections are learned by the ANN by observing what error occurs with

what combinations of system inputs, measurements, and state.

A problem can arise if the filter estimate is poor and the output is unstable. An example

of this would be a state in the filter that is corrupted by process noise and not corrected by
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measurements. If this state is directly related to an output then the output will drift as well.

The uncorrected filter estimate of this output will quickly become inaccurate and drift far

from the truth. However, the ANN correction may be able to correct the output enough

to limit the error and stabilize the output. In this case, the ANN correction can stabilize

the output presented to the user but the internal filter state will still drift. Since the filter

output is grossly inaccurate, any a priori known relation between the drifted output and

other outputs will be useless. We are now wasting a priori information we programmed

into our filter. In this case the drifted filter output is only a nuisance to the ANN output

correction which essentially has to relearn the filter known relationship between the drifted

output and the other outputs. Also, if the ANN correction was removed the output would

return to the drifted filter output. Depending on how long the filter output has drifted, the

output estimate could be grossly inaccurate. To prevent losing a priori information when

states drift, we must stabilize the actual filter state. To do this, we ANN must correct the

internal filter state instead of the output as outlined in the next section.

ANN Correcting Filter State Estimate.

The second way to correct the filter is to provide corrections to the state estimates.

This requires correcting the internal filter state and not just the output presented to the

user. The internal filter state is the value used by the filter at the next time step unlike the

previous section where the correction was only make to the output presented to the user.

The equations from Section III are modified to correct the internal filter state instead of the

state output. An overview of the final diagram is shown in Figure 18.

To show this in equation form, first we need to break up the filter from its output

function to get to the state estimates:

x̂′k|k = s
(
x̂k−1|k−1,u f

k , z
f
k |θ

X
)

(101)

80



Figure 18: Block diagram of a generic standard filter with state estimate correction

provided by an ANN. The state estimate correction ANN takes all the system inputs and

measurements in order to correct the updated state estimate from the filter. The red line

denotes the ANN provided correction which if removed falls back to the original filter.

where the filter function s gives an estimate for the state x̂′k|k based on all information up to

and including time step k. The prime is added to differentiate the filter state estimate from

the final state estimate x̂k. To correct s we must define the state error committed by the

filter:

x̃k = xk − x̂′k (102)

x̃′k = x̂k − x̂′k (103)
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where x̃k is the true error committed by the state estimate of the filter x̂′k based on the truth

xk which is derived from some high fidelity source. An ANN will now be trained on the

true error x̃k to provide a correction:

x̃′k = sNN
c (x̂k−1,uk, zk,hNN

k−1|θ
C) (104)

where x̃′k is the estimate of the true error committed by the filter x̃k. The ANN uses the

full system inputs and measurements uk, zk while the filter is restricted to only the system

inputs and measurements it knows how to incorporate u f
k , z

f
k . The ANN correction is then

applied to correct the state estimate of the filter to close the gap between the filter and the

truth:

x̂k = x̂′k + x̃′k (105)

where x̂k is now the ANN corrected best estimate of the state. This corrected estimate will

be used as input to the s() function in Equation 101. This corrected state can then be used

to estimate the output:

ŷk = o(x̂k|θ
O) (106)

where ŷk is the final output from the corrected state filter. The output as one equations is

then:

ŷk = o
(
s(xk−1,u f

k , z
f
k , θ

X) + sNN
c (xk−1,uk, zk,hNN

k−1, θ
C)|θO

)
(107)

With this change from correcting filter output to correcting internal filter state the ANN can

now improve the state estimate made by the filter in a way not possible in Section III. This

state correction has the benefit of stabilizing a filter state that could have been potentially

unstable. For example, there may have been a state that was not updated by measurements

which caused the filter state to drift. However, when the ANN corrected this state it may

have become stable and stopped drifting. If the filter becomes stable, the ANN may have

used unknown measurements zu
k to provide the stability. Unlike in the previous section, the

state correction is made before the state is given to the next time step or the output function.
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This corrected state is internal to the filter which allows relationships in the filter equations

to benefit form this more accurate state. If the ANN correction is removed the state will

begin to drift from its corrected starting point.

This type of combination may make training an ANN more difficult. In this type of

correction, the filter state at the next time step is a function of the ANN estimate. The

simple approach to train the state correction ANN would be to generate estimates from the

filter at every time step and present the error at each time step to the ANN as the supervised

output target. The ANN would then learn the errors committed by the filter at each time

step. However, using this simple approach, at runtime the ANN will overestimate the error

committed by the filter. This is because the filter state estimates contain less error since the

filter uses corrected state estimates at the start of each time step. To correctly estimate the

error at runtime, the ANN output target must include this feedback at every time step or

else the ANN will overestimate the errors the filter makes. To correct this problem, after N

weight updates the corrected filter output must be recalculated using the updated version of

the ANN. This will then change the output targets for the next training epoch of the ANN.

When this process is repeated, the ANN optimizer will eventually converge on a local

minimum or saddle point resulting in the same corrections for each epoch. Thus, the output

target for the next update will not change significantly. This extra step of recalculating the

target output for the ANN may make training more difficult. However, if the optimizer

does train the ANN, then the ANN will correctly estimate the errors committed by the filter

when it uses corrected states to update at runtime.

ANN Correcting Filter Propagate with ANN.

Another method an ANN can correct a filter is specifically in the state predict step

[93, 37, 110, 14, 106, 97, 52]. This placement aims to help only the state predict function

with errors in the state dynamics equation. A block diagram of this entire process is shown

in Figure 19.
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Figure 19: Block diagram of a generic standard filter with state predict correction provided

by an ANN. The state predict correction ANN only takes the system inputs and unknown

measurements as input. The objective of this ANN is only to improve the state predict

block. The red line denotes the ANN provided correction which if removed falls back to

the original filter.

The ANN will once again attempt to estimate the errors committed by the a priori

state predict function and add in a correction. The state estimate from the filter before a

measurement update is:

x̂′k|k−1 = f(x̂k−1|k−1,u f
k |θ

F)

84



where the filter uses an a priori state predict equation f to predict the state at time k−1 to the

state at time step k. The filter uses the previous state estimate x̂k−1|k−1 and the current system

input it can incorporate u f
k . This estimate contains error from the true solution according to

the following two equations:

x̃k|k−1 = xk|k−1 − x̂′k|k−1 (108)

x̃′k|k−1 = x̂k|k−1 − x̂′k|k−1 (109)

where x̃k|k−1 is the true error committed by the state estimate x̂′k|k−1 of the f() function based

on the truth xk|k−1. An ANN will now be trained to estimate the true error x̃k|k−1:

x̃′k|k−1 = fNN
c (x̂k−1|k−1,uk, zu

k ,h
NN
k−1|θ

C) (110)

where the ANN uses all information at the current time including the previous state estimate

x̂k−1|k−1, all the system inputs uk, and the measurements the filter cannot incorporate zu
k . The

only information not used by the ANN is the set of measurements the filter knows how to

incorporate z f
k . This is different compared to Sections III and III where the ANN was given

all available data. The state predict correction ANN is not given the measurements the

filter will use to perform the measurement update. The measurement update step is left

alone and keeps using its same measurements z f
k . If the known measurements z f

k are used

in the state predict correction ANN, the ANN may start to do some of the calculations

performed by the measurement update step. This would make the filter overconfident in

the state, because the state predict and measurement update no longer use independent

data. However, we allow the ANN to use unknown measurements zu
k , because the divide

between system inputs and measurements can be problem specific as stated in Section III.

In general, the design does not have to use unknown measurements zu
k if the user desired

to actually control this system or make prediction into the future. After the ANN estimates

the error committed by the filter, the correction is added to the filter estimate to make the
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final state predict estimate:

x̂k|k−1 = x̂′k|k−1 + x̃′k|k−1 (111)

where x̂k|k−1 is the corrected state estimate for time step k given measurements up to and

including k − 1. This state estimate is now updated by the measurement update function to

include the measurements at time step k:

x̂k|k = mu(x̂k|k−1, z f
k |θ

MU) (112)

where the filter uses the measurements z f
k to update the current propagated state from time

k − 1 to k. Finally this state estimate is used to calculate the output estimate at the current

time:

ŷk = o(x̂k|k|θ
O) (113)

As with the state estimate correction in III the state predict correction ANN must also be

trained with the a priori state predict function in the training loop. Since the corrections

provide a better estimate for the state predict at the next time step, the estimate at the

next time step will also be more accurate. If the ANN is trained on a static training set

of predictions by the filter, the ANN will begin to overestimate errors committed by the

filter. Thus, when training is performed, the a priori state predict function FILTERP must

be incorporated into training to ensure the ANN is estimating the correct error committed

by the filter.

ANN Measurements For Filters.

The second general method to integrate an a priori filter and an ANN is to have the

ANN provide measurements for the filter [28]. A block diagram of this type of integration

is shown in Figure 20. This integration is accomplished by training the ANN to produce

measurements which can be included in the a priori filter. The ANN input includes

measurements which the filter could not incorporate. Incorporating the measurements from

the ANN gives the filter information from these previously unusable measurements. The
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functional representation of this system is thus:

ẑn
k = mNN(zk,hNN

k−1|θ
M) (114)

z′k =
[
z f

k ⊕ ẑn
k

]
(115)

ŷk = FILTER(xk−1,uk, z′k|θ) (116)

where ŷk is the estimate of the output at time step k, xk is the state of the filter at time step

k, uk is system inputs at time step k, FILTER() is the a priori filter function, and zk is the

measurements at time step k. The function mNN() determines new measurements ẑn
k from

existing measurements zk. The measurements are broken into z f
k and zu

k . The measurement

z f
k is the part of the measurements from zk which the filter naturally incorporates. The

measurement zu
k is the part of the measurements from zk which the filter cannot incorporate.

New measurements zn
k are measurements which the filter can incorporate and are

available during training, but are not available during run time. The ANN provides an

estimate of these new measurements ẑn
k at runtime. The total measurements to the filter are

then z′k = z f
k ⊕ ẑn

k . The measurements to the filter has been replaced with an concatenation of

the raw measurements the filter could incorporate z f
k , and the new measurement estimates

determined the ANN ẑn
k . Note that the estimated measurements by the ANN must be values

which the filter can incorporate. In this instance the filter could incorporate measurements

z f
k ⊕ zn

k . However, the true measurements for zn
k are only available during training, not

at runtime. At runtime the true measurements are replaced by an estimate provided by

the ANN ẑn
k . The advantage to this approach is that the ANN can use the unknown

measurements zu
k to aid in determining the new measurements ẑn

k .

The measurement ANN can also use the known measurements in order to estimate the

new measurements. This synergy may allow a better estimate of the new measurements.

However, using known measurements may also make the new measurements highly

correlated with the known measurements. The filter must be informed of this dependence
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Figure 20: Block diagram of a generic standard filter with measurements provided in part

by an ANN. The blue rounded block represents the filter operation FILTER(). The overall

filter has three components the state predict, measurement update, and output.

so that the filter does not become overconfident in the state estimates. For example, assume

that the new measurements are a high fidelity GPS receiver and known measurements are a

low grade GPS receiver. The measurement ANN then uses the known GPS measurements

and unknown measurements to provide a close estimate of the new measurements from

the high fidelity GPS receiver. The filter would include information that the two

GPS measurements are correlated. The method to incorporate the dependence of the
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measurements would be the same process if we had always included two GPS receivers

as measurements or other similar correlated measurements.

The measurement ANN method allows incorporating a priori system dynamics

and measurement update knowledge into the filter while being flexible enough to use

measurements which have have little a priori information. This method can also estimate

measurements which the filter may be able to incorporate but the relationship is very

complex, and simplification is difficult or degrades performance. In this dissertation,

the VLF measurements have little a prior information and cannot be related to position.

There is no known way to use the raw VLF features to estimate position. Also, it is very

costly to determine the relationship between the VLF measurements and position manually.

Determining the relationship manually would involve locating and characterizing all

the VLF transmitters in a given area and determining a measurement update for each

transmitter. Instead the ANN is trained to estimate position using the FFT features. This

turns measurements which we did not know how to incorporate (VLF measurements) into

measurements which we can incorporate (position).

The measurement ANN allows a standard filter to make state estimates while

incorporating extra information with very little a priori information. All existing filter

techniques still apply such as state predict, measurement update, outlier rejection, and

anything else performed by the a priori filter. This approach essentially allows the ANN

output to be treated as new sensor information.

ANN Adaptive Filter.

Another method to integrate ANNs and standard filters is to allow the ANN to change

filter parameters [94, 49, 48, 57]. A block diagram of this is shown in Figure 21. This

style of integration maintains the functional form of the standard filter but allows an ANN

to modify the filter parameters in response to changes in system input, measurements, and
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current state. In equation form this is:

ŷ′k = FILTER(x̂k−1,u f
k , z

f
k |θk) (117)

θk = θNN(x̂k−1,u f
k , z

f
k |θ

D) (118)

where xk,uk, zk are the state, system inputs, and measurements respectively. FILTER() is

the standard filter function parameterized by θk. However, the filter parameters are actually

a function of the state, system inputs, and measurements. This allows the a priori filter to

adapt to changes in the system. For example one such change could be a range dependent

range error. In such a case, the R matrix in a Kalman filter must change depending on

the measurement. The introduction of the adaptive parameter ANN allows the changes in

parameters to be learned by empirical data. To train the ANN, the filter would calculate

state estimates, and the ANN would tune parameters to minimize the filter state error.

Adaptive filtering can also be done on filter functions defined by ANNs. ANNs also

have parameter weights which could be adapted based on the state, system inputs, and

measurements. This dissertation will not explore this option, because the machine learning

literature was sparse on how to train such an ANN however, there was no reason why it

could not be done.

ANN Filter Integration Overview.

The previous sections outlined five different methods to augment an a priori filters with

ANNs. This section outlines an overall algorithm in order to combine different methods to

augment some a priori filter. This algorithm process is outlined as a flowchart in Figure 22.

The first step is to obtain some a priori base filter to augment. This filter must be

able to create final state estimates before any integration is done. The next step involves

three decisions relating to adding correction ANNs to the base filter. The first decision is

if state predict corrections should be added. State predict correction should be added when

the current state predict function has poor performance and/or has room for improvement.
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Figure 21: Block diagram of a standard filter with parameters provided by ANNs.

For example, if the state predict function is a simplification of something that is know to

be more complex, then a correction may improve the estimate of the final propagated state

estimate.

The second correction type decision is if state estimate corrections should be added

after the measurement update. State estimate corrections should be added when the current

measurement update function has poor performance and/or has room for improvement.

This correction may also make corrections related to state propagation especially if there

is no state predict correction. However, this correction should not be chosen to specifically

correct problems with the state predict function.

The third correction type decision is if filter output correction should be added. This

correction should be added for two possible reasons. The first reason is if the user does

not want to modify the internal filter estimates due to training difficulties or trust in

ANNs. The second reason is if the user believes the internal state is difficult to correct,

and the output correction may provide better performance. While theoretically, the state
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Figure 22: Flowchart for determining which integrations to include. Orange blocks relate

to base filter corrections. Green blocks relate to providing new measurements to the base

filter. Red blocks relate to adapting parameters of the base filter.

estimate correction in the previous paragraph can provide the same corrections as the

output correction, in practice this may not be true. For example, if there are many states

compared to outputs, and the output function is complex, it may be easier to train an ANN

with the smaller set of inputs. The complex output function may make it difficult for the

state estimate to operate on the states. However, the output correction function corrects
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the output directly which may be simpler to correct. Thus, the output correction may

sometimes in practice make better corrections compared to the state estimate.

The next section of the flowchart involves adding a measurement ANN. A

measurement ANN should be added for two possible reasons. The first reason is if

the user believes there are unknown measurements that contain state information, but

the base filter cannot incorporate the unknown measurements. The measurement ANN

would bridge the gap between these unknown measurements and the states by estimating

new measurements the base filter can incorporate. The second reason would be if the

user believes that the measurement update function(s) do not adequately represent the

relation between the measurements and states. For example, if the measurement update

functions were a simplification of some complex phenomenon. Thus, by estimating the

state with known measurements, more information about the relationship between state

and measurements could be gained compared to using the measurement update function(s)

alone. As always when adding a measurement ANN, (but especially if done for this reason),

the dependence of the measurements must be given to the filter to prevent the filter from

producing overconfident estimates.

The final section of the flowchart involves adjusting parameters using an ANN. If

the user decides to adjust parameters, the first step is to determine which parameters to

adjust, since not all the parameters of the base filter must be adjusted. The parameters

that should be adjusted are the parameters the user believes change over time based on the

current system inputs, measurements, and state. Adjusting too many parameters may make

training the adaptive ANN difficult, and filter performance could suffer.

After following the full flowchart, the base filter will be augmented with all the

different types of ANNs augmentations applicable to this problem. However there are

some guidelines to follow during this process to make the integration a success. As with
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the ANN as filter parts integration method, these guidelines are outlined in the next Section

III.

Combined Framework Overview

This chapter so far has given two different classes of how to combine ANNs and

filters. One class viewed integration as ANNs substituting filter functions. The other class

viewed integration as ANNs augmenting existing a priori filters. This section outlines

how to combine these two different methods into one overall framework and gives overall

guidelines for integrating ANNs into filters.

Combining the two different classes of integration is a straightforward process of

following the two flowcharts in order. The process starts by following the ANN as parts

flowchart found in Figure 16. This algorithm produces a base filter which may or may not

have ANN components. The next step is to follow the ANN filter integration flowchart

found in Figure 22. However, this flowchart begins with the base filter determined in

the first step. Thus, the algorithm will augment the base filter (which may have ANN

components) with other ANNs. The final result is an algorithm for an overall framework

to combine ANNs and filter. However, there are some guidelines to follow when using this

algorithm.

One guideline to follow is to limit the ANN inputs to only what is necessary. In general

this chapter has given ANNs all possible inputs in order to show the full extent of inputs.

However, inputs for the ANN will require more supervised training data to train the ANN.

Thus, a priori knowledge and experimentation maybe necessary to trim the inputs of the

ANN in order to allow adequate training with the available training data.

The next guideline is that high capacity ANNs with more inputs are more difficult

to train compared to smaller low capacity ANNs with few inputs. Thus, while making

decisions to break up a function or not, the user must realize that if the the function is kept

whole and will be an ANN, it may be more difficult to train compared to multiple simpler
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ANNs with less inputs. This will also make the overall algorithm more transparent as the

output passed between these smaller ANNs can be observed. For example, monitoring the

output of the ANNs may shed light on which sections of the problem are more difficult.

Another guideline is that replacing a priori functions with ANN should have a reason.

If the performance is adequate with a priori functions it may be a waste of time to develop

and ANN solution that may increase performance. The user should favor a simpler filter

and only add more ANNs based on final performance goals. However, if there is no a priori

function, or the performance is poor, then using an ANN can remove a weak link in the

filter.

The last guideline is to use as much a priori knowledge as possible. While the reason

for using an ANNs is that the current a priori knowledge is only part of the complete picture,

a priori knowledge should be incorporated into the filter where possible. This is the entire

reason for the second class of integrating ANNs with filters. If there is knowledge about

the system, an a priori function should incorporate the existing information if possible.

The ANN should fill in the gaps where the current a priori knowledge is incomplete or

inaccurate. For example, if it is known that a position state is the derivative of a velocity

state, then explicitly describing this relationship in the state predict function will guarantee

that the filter knows this relationship. It is possible an ANN will learn this relationship

from empirical data, but the purpose of the ANN is to learn relationships that are unknown,

not relearn known relationships.

In conclusion, the flowchart provides guidance on how to build a filter, but the user

must also follow some general guidelines to use their engineering judgment and a priori

knowledge to create a successful filter.

State of the Art ANN Integration Revisited

This section revisits the previous research into ANN integration in order to fit previous

work into the framework of this chapter. Throughout this Chapter references were given
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where each kind of integration has been found in the literature except two types of

integration. The first type not found in the literature is the state estimate correction ANN

outlined in Section III. This type of integration was never explicitly found in the literature.

However, research implementations of correction the filter output outlined in Section III

were not always explicit if the corrected output was used as the starting estimate for the

next time step. It is possible one of these implementations did implement a state estimate

correction ANN.

The other type of integration found in literature, but not explicitly outlined in the

framework, is the EKF optimizer [89, 32]. The EKF optimizer, as outlined in Section II,

is unique because the algorithm is first and foremost an optimizer, not a filter for state

estimation. The EKF optimizer only becomes a filter in the traditional sense when the

state vector includes states that are not weights of the ANN as shown in Equations 73

and 77. At this point, the filter predicts and updates both the weights and states. In

an offline application this would be equivalent to training the state predict function and

measurement predict function using an EKF optimizer, then running the ANN integrated

EKF filter with these weights. This is an example of ANN as filter parts from Section III.

In an online application we allow the parameters of the ANN to be inputs by modifying the

ANN equation from:

aNN(x,hNN |θA)→ aNN(x,hNN , θA) (119)

where we changed the ANN from having the parameters or weights given θA, to having the

parameters or weights as an input θA. This once again fits into the ANN as filter parts in

Section III where we also use an adaptive filter from Section III.

Thus the previous history of ANN integration fits into the architecture given in

Sections III, and III.
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IV. Neural Network Confidence Improvements

No matter how the user will integrate ANNs and filters, there will be one common

thread with the ANN output estimates – they must provide covariance. Estimates without

covariance are useless to a filter for navigation. It is possible to use an average covariance

determined after the model is trained by evaluating the variance of the error. However,

providing a covariance per sample improves covariance performance, since it takes into

account the current ANN inputs. A popular type of ANN that provides covariance estimate

is an MDN outlined in Section II. This chapter defines some improvements over existing

methods that apply to MDN which output GMM parameters. The first two sections outline

improvements that allow easier training and better performance compared to classical

MDN training. The last section defines methods to measure and quantify the errors in

estimating covariance made by the MDN.

Gaussian Mixture Model Custom Loss Function

This section defines a method to improve estimates made by standard GMM loss

functions defined in Section II by separating the loss function into two parts. Each part

is the loss for just covariance or mean estimates. The GMM loss function is the standard

method to determine covariance from ANN, thus improving this loss function will produce

better results for applications that require covariance estimates. This method also allows

to optimize the means estimates with a loss function that is not implicitly tied to the

distribution of the MDN.

During training, to minimize a GMM loss function as shown in Equation 62,

the optimizer will make changes to three different values to lower the loss – means,

covariances, and weights. At the beginning of training it is likely that the covariance is

a poor estimate of the error between the means and targets. When the covariance is too

97



large there are two values that can be changed to correct this inaccuracy – covariance or

means. Intuitively if the covariance is decreased it will better match the error. However, if

the error is increased it may also make the covariance more accurate and thus decrease the

loss in the GMM loss function. In order to disallow increasing error to improve covariance

accuracy, we must separate the loss function into two parts where means and covariance

do not interact. We shall do this be adding a new loss function to our current GMM loss as

shown:

LGMM∗ = LGMM + βLcustom (120)

where β is a scaling factor to compare the loss functions and our new loss function, or

custom loss function, which is defined as:

Lcustom =

N−1∑
i=0

M−1∑
j=0

w jcustom(yi,µi
j)

 (121)

where custom() is simply a function to compare a target vector y to a predicted output. The

same target vector y is compared for every jth mean µ j from the M mixtures of Gaussians

predicted at the ith sample. The loss from each target and mean combination is then scaled

by the weight of that Gaussian w j. The custom loss function only depends on the means,

weights and output targets.

Next we must remove the dependence of means from the standard GMM loss function

LGMM. To remove the means from the standard GMM loss we will alter the derivative with

respect to the means of the standard GMM loss. We can alter the gradient without changing

the function by utilizing new software that make gradient changes a simple process.

New symbolic math software automatically computes the gradients of the operations

described in the ANN architecture. This process makes algorithms such as back

propagation [38] simple to implement. Recent software like TensorFlow [1] allows this

automatic process to be manually edited by the user. The user can now let the software

perform the majority of the back propagation algorithm but add a few extra changes. This

dissertation uses these extra changes to remove the MSE component from the GMM loss
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function commonly used in MDNs. Next we outline the method to implement the gradient

change.

GMM Custom Loss Function Method.

Our goal in this section is to describe how to alter the gradient of the GMM loss in

order to make a GMM Loss function LGMM∗ which does not optimize the means with the

implicit optimization of the distribution. In our case, Gaussian distributions implicitly use

a MSE loss function LMS E when incorporated in MDN [7] and [103]. Instead we wish to

use our own custom loss function Lcustom(y,µ0...M−1) to optimize the means of the GMM

parameters. The first step in understanding how to alter the gradient is to know what the

current gradient is.

As explained in detail in [7] and [103], the GMM loss function will optimize the means

in a similar fashion to MSE. The MSE similarity comes from the fact that the derivative

of the GMM loss function with respect to our MDN output will be of a similar form to

the derivative of the MSE loss function with respect to the ANN output. To show this

similarity, we first start with the MSE loss function for one sample:

LMS E =
1
D

D−1∑
d=0

(µd − yd)2 (122)

where µd is the estimate from the ANN of target yd in the dth dimension. We take the

derivative of the MSE loss function with respect to the ANN output at each dimension for

one sample is as follows:
∂LMS E

∂µd
=

2
D

(µd − yd) (123)

In vector form this equation is:

∂LMS E

∂µ
=

2
D

(µ − y) (124)

From this equation we note that the derivative of the loss function with respect to the output

is proportional to the error between the output and target with the same scale factor for all

dimensions and samples.
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Next, we determine the derivative of one of the Gaussian distributions in the GMM

loss function with respect to the MDN output for one sample (see Appendix Section A for

steps).
∂LGMM

∂µ
= Σ−1 (µ − y) (125)

From the matrix form it is clear that the derivative of each dimension is now correlated

with other dimensions through the covariance information in Σ. However, the derivatives

are still proportional to the error between the predicted output and the targets. Next,

comparing Equation 124 and Equation 125 we see that the derivative of MSE loss applies a

constant scale factor to each dimension, while the derivative of GMM loss mixes the error

through the inverse covariance matrix Σ−1.

When the dimensions in GMM are independent, the covariance matrix becomes a

diagonal matrix and becomes closer to MSE loss. The independent GMM loss applies only

a possibly different scaling factor to each dimension. If the variances were further assumed

to be a constant, 2/D then all dimensions would have the same scale factor and become the

same as the derivative of MSE loss. Thus, when the assumptions of MSE loss are applied

to the GMM loss, the derivative functions will become similar.

Equation 125 is where we can see how large error with appropriate covariance receives

a smaller gradient, and thus smaller weight updates, through the interaction of means and

covariance. For example, assume the covariance matrix is diagonal, and thus the inverse

covariance matrix is diagonal, with each diagonal being the inverse of the diagonal in

the covariance matrix. Each of these diagonals in the inverse covariance matrix will be

multiplied by the error between the mean and target in the same dimension. The result

of this multiply will be multiplied by the gradient which determines how large the weight

updates will be. Thus, if one dimension has large error, the gradient update will be large as

well. However, the error is also multiplied by the inverse covariance. If the covariance is

large the inverse will be small and thus shrink the error and resulting gradient update. This
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is how accurate large covariance estimates will deter reducing the error in order to maintain

accurate covariance.

From our observation of the derivatives of the loss functions with respect to the ANN

and MDN outputs, we conclude that modifying the partial derivative ∂LGMM
∂µ

of the GMM

loss function would alter the underlying loss function to optimize the means of the GMM

parameters.

We wish to alter this derivative in order to remove the interaction of the means and

covariance. To accomplish this, we simply remove the derivative of the GMM loss with

respect to the means. To remove this component of the derivative we set ∂L
∂µ

= 0 when

calculating derivatives. Now the standard GMM loss is unable to make weight updates to

optimize the means. However we still need to optimize the means to minimize some kind

of loss. This is why we introduced our own derivative by adding our custom loss function

to the GMM loss function to create a new overall loss function from Equation 120.

Now our derivative with respect to the means will be:

∂LGMM∗

∂µ
=
∂LGMM

∂µ
+
∂Lcustom

∂µ
(126)

however we have set ∂LGMM
∂µ

= 0 so our final partial derivative is:

∂LGMM∗

∂µ
=
∂Lcustom

∂µ
(127)

where now the means are optimized in accordance to our new custom loss function only

since we have removed the contributions from the GMM loss function. However, we have

left the derivatives with respect to the weights and covariance terms untouched. Thus, the

GMM loss function will still attempt to optimize the covariances and weights of the GMM

in order to express the uncertainty of the means (which are being optimized by our custom

loss function). Thus our derivative with respect to the covariances will be:

∂LGMM∗

∂Σ
=
∂LGMM

∂Σ
+
∂Lcustom

∂Σ
(128)
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since the custom loss function is not a function of Σ we know the derivative will be zero

∂Lcustom
∂Σ

= 0 so our final partial derivative is:

∂LGMM∗

∂Σ
=
∂LGMM

∂Σ
. (129)

In conclusion we have shown a method to remove the interaction between covariance and

means in the GMM loss function in order to prevent the optimizer from increasing error to

match covariance. In addition, this method allows a custom loss function to determine the

means of the distribution while still providing covariance.

Gradient Correlation and Scaling.

In our method of GMM custom loss function, the custom loss function has no

dependence on the covariance between dimensions. This was done on purpose to remove

the interaction between means and covariance. However, in some cases it may be desirable

to reintroduce this correlation, for instance, if the original goal was to introduce scaling

or a custom loss function but not remove mean and covariance interaction. To bring this

correlation back to our custom loss function, we once again will modify the derivative

function to incorporate this new information. We define a new derivative of the custom loss

function with respect to the means, based on the custom loss derivative and the original

derivative Equation 125:
∂Lcustom

∂µ

∗

=

M−1∑
j=0

Σ−1
j
∂Lcustom

∂µ j
(130)

where this equation is for one sample of the N total samples and Σ−1
j is the inverse

covariance matrix of the jth mixture out of M mixtures. Now we have reintroduced the

covariance information from the GMM loss derivative. This new derivative now correlates

the dimensions of the output so the optimizer can modify the correlated states in unison.

This method creates a step in between standard GMM loss and our custom loss function by

allowing mean/covariance interaction but removing the implicit MSE loss and introducing

a scaling factor between mean and covariance.
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Gradient Normalization for Multiple Loss Functions.

With the introduction of multiple loss functions in Section IV we introduced a scaling

factor β to weight the relative differences between the loss functions. The scaling factor

increases or decreases the relative loss attributed to each loss function. However, our main

goal was to change the gradient to encourage the optimizer to adjust weights in order to

improve one of the loss functions more compared to the other. The larger scale factor will

make the loss larger, and subsequently the gradients from that loss should follow. However,

the magnitude of the gradients does not have to be correlated with the magnitude of the

loss. For example, a function that is evaluated with a high magnitude may have a very

small derivative.

We actually want to scale the gradients of the loss functions relative to each other. To

achieve gradient scaling, we normalize the magnitude of the gradients with respect to each

function. Then we will apply a scaling to the normalized gradient. Scaling the gradient

assures a relative scaling of the impact on the weights from the two loss functions, since

the gradient directly impact the weight updates. To demonstrate gradient scaling we write

the gradient of the loss function with respect to the ANN output parameters z:

∂LGMM∗

∂z
=
∂LGMM

∂z
+ β

∂Lcustom

∂z
(131)

Next we will normalize the gradients and apply our β scaling directly to the normalized

custom loss function gradient:

∂LGMM∗

∂z
=

∂LGMM
∂z∥∥∥∂LGMM
∂z

∥∥∥
2

+ β

∂Lcustom
∂z∥∥∥∂Lcustom
∂z

∥∥∥
2

(132)

This normalization enforces the gradient magnitudes of each function to always be in a

fixed relative scaling to each other. Note that we have changed the original magnitude of

the gradients by forcing one of the magnitudes to always be one. Due to this change it

may be necessary to change the learning rate and learning rate scheduler to account for this
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change in gradient. The end result is that our optimizer will always make weights updates

with a fixed relative scaling between the loss functions.

Mixture Density Network Training Methods

Implementing an MDN produces non-trivial practical issues that require special

attention in order to train models without running into numerical computation problems,

which are covered in the subsections that follow. The first practical issue is how to scale

the output parameters when training to a scaled version of the output. The second practical

issue is reducing the mixture of Gaussians into a single Gaussian to use with applications

that require a single distribution. The next section describes how to fix a numerical

computation problem in determining gradients when probabilities are rounded to exactly

zero due to underflow. The last section defines a method to simplify calculating Gaussian

log likelihoods which avoids numerical precision problems.

Output Scaling.

This section outlines how to scale GMM parameters when training to a scaled output.

Training to a scaled output is done because training to large output values will be slow when

using standard initialization algorithms. The standard initialization algorithms usually try

to maintain layer outputs that are zero mean with a variance of one [23]. Thus if the target

output is much larger than one, the optimizer will spend many weight updates to scale up

the ANN output to the appropriate target output range. To avoid this problem, we may

scale the target outputs using the equation:

y′ = (y + b) � s (133)

where y′ is the scaled version of y and � is the element-wise multiplication operator. The

original target output is thus biased by b and scaled element-wise by s. The values for b and

s are chosen so that the resulting targets y′ have zero mean and a standard deviation of one

[25]. Our ANN will now estimate the scaled version of our target output y′. This allows
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the optimizer to spend fewer updates trying to bring the prediction range in alignment with

the target range, especially if the magnitudes of the original target range are much larger

than one.

However, now that we are training to scaled output our MDN will output, a scaled

version of the GMM parameters. To obtain unscaled estimates from the GMM probability

distribution, it is more convenient to unscale the parameters and just calculate the unscaled

distribution. To unscale the parameters of the GMM with σ and ρ values we use the

equation:

µi =
µ′i − b[i]

s[i]
(134)

σi =
σ′i
s[i]

(135)

where µ is the original mean and µ′ is the scaled mean determined by the MDN. The index i

is for each dimension of the Gaussian and s[i], b[i] are the ith components of the scaling and

biasing vectors, respectively, from Equation 133. If we were using the inverse covariance

form with the upper diagonal A we would need to scale A as such:

Ai, j = A′i, js[ j] (136)

where A′i, j is ith row and jth column of the scaled upper diagonal A′ determined by the

MDN. Note that we scale by multiplying and not dividing like in Equation 135, because

this is already the inverse form of the covariance matrix. Also note that we scale each

column by the same corresponding value of our scaling vector and allow Equation 64 to

distribute the scaling across rows. With this method we can train to scaled parameters and

still obtain probabilities for the unscaled versions of the GMM distributions.

Single Gaussian Reduction.

While the GMM is useful because it can represent a variety of probability distributions,

the multiple distributions can also be a problem when only one Gaussian distribution can

be used, such as in a Kalman filter. The naive approach at reduction would be to limit
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the MDN output to only one Gaussian mixture. However, this creates problems when

the middle of the two distributions is actually not likely [7]. For example, if the MDN

probability was distributed between two parallel roads it may represent the Probability

Density Function (PDF) as a bimodal distribution with two Gaussian distributions centered

on each road. To represent this as one Gaussian distribution, the distribution would be

centered in between the roads which may or may not be a valid output depending on the

situation. A sensible reduction method is to only use the Gaussian distribution from the

mixtures with the highest weight. In our road example this would reduce to one road which

may not always be correct, but it will be a valid output, in the sense that it would lie on a

road.

An extra piece of information which can be used when reducing the GMM is the

magnitude of the weights of each mixture. The higher the weight of one Gaussian the

more the mixture tends toward a single Gaussian distribution. When the weights are evenly

distributed, the mixture will become less Gaussian. In certain applications which assume

Gaussian distributions, we may use this property of the weights to reject distributions which

are highly non-Gaussian. If these applications used non-Gaussian distributions, it would

invalidate assumptions of the application and increase the resulting error.

In fact, when the underlying distribution is Gaussian, our experiments in MDN

show that the MDN favors moving all the weight on one of the Gaussian mixtures. We

observed that the MDNs favor adding weight to one mixture if possible instead of stacking

distributions with similar means. Thus, the MDN will favor reducing the GMM distribution

to a single Gaussian distribution if possible. In turn, choosing the highest weighted

Gaussian will reduce to the correct underlying Gaussian distribution since the ANN will

move all the weight onto one distribution if possible.

In summary, MDNs tend to make one Gaussian distribution have higher weight if

possible. Thus, if a single distribution is required, reducing to the highest weighted
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distribution from multiple mixtures is a good assumption when the largest weight is much

higher compared to the rest of the distributions.

Derivative Changes.

Theoretically, Gaussian distributions have probability over the entire input space and

can have arbitrarily small covariances. However, when implemented in a computer, it is

possible to have probability which underflows to exactly zero probability or other numerical

instabilities. The underflows can be especially true early in training when the model has

a poor estimate of the distribution or very late when the model increases certainty about

estimates. Graves et al. [25] notes that later in training the GMM loss function tends to

encounter numerical instability problems.

An example of instability occurs when model initialization causes all the means to

be far from the target output and assigns low variance to each mean. This initialization

creates a mismatch between the predicted means and the targets which could result in an

underflow and create a zero probability estimate. The underflow will occur if all the means

of one distribution are very far from the target. Thus, if all the mixtures of one sample have

zero probability, we notice from Equation 56 that the loss function will attempt to compute

− ln(0) which results in infinity. This means our loss function will have infinite loss. This

in itself is not a problem, until we attempt to back propagate the loss to update the weights

as is standard in ANN training [38]. As shown in the Appendix Section A this will lead to

Not a Number (NaN)s in the derivative.

If a NaN appears in a derivative with respect to the loss function, then the NaN

will propagate through the entire MDN and make all weights NaN via the chain rule of

differentiation. However, this NaN was produced by only one sample of possibly many.

To correct this problem we ignore the NaN sample and use all the rest of the samples to

update the weights. If the sample with NaN is similar to other samples, eventually the NaN

sample will return a non-zero probability. For our previous example, in order to ignore the
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NaN created by the derivative of − ln(0) we modified the gradient of our loss function as

follows:

∂ ln( f (x))
∂x

=


f ′(x)
f (x) f (x) > 0

0 f (x) = 0
(137)

where f ′(x) =
∂ f (x)
∂x . This will now ensure that NaN values will not pollute our weights.

Returning a zero also tells the optimizer that there is no information from this target output

which is true, since the shape of the distribution in this zero probability region is flat with

no gradient to follow.

In general, there may be other cases where the derivatives become NaN due to

numerical precision problems, but to determining all the cases may be difficult. To

overcome this difficulty we apply a general modification to the gradient at the end of the

MDN to catch all the NaNs that could have appeared along our differentiation of the loss

function. This general modification is as follows:

∂L

∂z
=


0, if ∂L

∂z = NaN

∂L
∂z , otherwise

(138)

where the derivative of loss function from Equation 56 with respect to the output GMM

parameters from the MDN z, is set to zero if the derivative is NaN. This will now catch any

problem where numerical precision in our loss function causes unexpected NaN results in

the derivative.

GMM Loss Probability Simplification.

When working with the numerical precision of computers we found that calculating

exponents of 32 bit floats and then taking the natural log can lead to significant error during

training due to floating point precision. Calculating exp with exponents in the hundreds

quickly becomes the upper value of a 32 bit floating point number and thus introduces

rounding. If we calculate the natural log after this rounding we will not end up with

our original exponent. This calculation occurs every time we calculate the negative log
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likelihood of GMM loss function found in Equation 62, since our probability is from

Equation 58 which contains exp(x) terms. To simplify this step and avoid the numerical

precision loss, we can rewrite Equation 58 by making it only an exponent:

p(y|{w0...M−1,µ0...M−1,Σ0...M−1}) = exp
(
−

1
2

(y − µ)TΣ−1(y − µ) − ln
(
(2π)D/2

|Σ|1/2
))

(139)

If this was not a mixture of Gaussians it would be mathematically correct to have the natural

log of the negative log likelihood cancel the exp function and be left only with the exponent.

However we are dealing with mixtures and we cannot distribute a log over a summation as

shown:

x = − ln(exp(−x)) (140)
N−1∑
i=0

xi , − ln

N−1∑
i=0

exp(−xi)

 (141)

We realize that mathematically logs cannot distribution over sums. However, we will

explore what happens to the derivative when this assumption is made and show a surprising

result. To simplify our math, we will only look at one sample from our GMM loss and

assume that the exponent of Equation 139 is:

e j(y,µ,Σ) =

(
−

1
2

(y − µ)TΣ−1(y − µ) − ln
(
(2π)D/2

|Σ|1/2
))

(142)

where j is the index of the mixture. With this substitution of the exponent GMM loss for

one sample is:

LGMM = − ln

M−1∑
j=0

w j exp
(
e j

) (143)

We will take the derivative of this loss function with respect to the arguments of e j (namely

µ,Σ) but for simplicity we will write this as ∂e. First, for reference we show the derivative

of a single Gaussian mixture (see Appendix Section A for steps):

∂LGMM

∂e
= −

∂e0

∂e
(144)
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where we have indexed the first and only Gaussian distribution at 0. Next, we show the

derivative of a mixture of Gaussian distributions (see Appendix Section A for steps):

∂LGMM

∂e
= −

M−1∑
j=0

softmax
(
e j + ln(w j)

) ∂e j

∂e
(145)

From Equation 144 and 145 it becomes clear that when we added multiple

distributions to make a mixture, the derivative applied a softmax weighting to the single

Gaussian derivative from Equation 144. Note that when M = 1, Equation 145 reduces to

Equation 144. Next, we assume that logs distribute over summations and take the derivative

of the resulting loss function (see Appendix Section A for steps):

∂LGMM

∂e
≈ −

M−1∑
j=0

∂e j

∂e
(146)

By comparing Equations 145 and 146 we see that the difference between the two equations

is the softmax weighting function. Thus, by assuming logarithms distribution over sums

our derivative loses the softmax weighting. Next, we will investigate what the softmax

weighting does when we use the proper loss function.

The softmax function increases relative differences between inputs by applying the

exp function to each input then normalizing. Thus, relative differences between the inputs

grow much larger. In our example the inputs are the exponents of a Gaussian distribution.

The exponents are always negative in order to return valid probabilities between zero and

one. The more negative this exponent values, the lower the probability will be for that

distribution in the mixture.

In our GMM probability, the exponent will be more negative when the error between

the target and mean is large. When taking the softmax of the exponent, large negative

errors will result in smaller weights. The softmax function will then magnify this relative

difference between weights so larger errors with have much smaller weights compared to

the exponents with smaller errors. Thus, the softmax weighting will give more weight to

distributions that have smaller errors and reduce weight from distribution with larger errors.
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This weighting is directly proportional to the gradient term. The larger the gradient term

the larger the impact on the weight update. Thus, distributions with larger error will have

less impact on weight update compared to distributions with smaller error. This effect will

make it more likely to further reduce error for distributions which already have less error.

By assuming that logarithms distribute over sums and thus removing the softmax,

we no longer apply a softmax weighting. Without the softmax weighting, all errors will

be weighted only by the magnitude of their error. Without weighting, there will be no

runaway effect that attempt to further decrease error for already low error distributions.

Thus, assuming logarithms distribution over sums may allow more time early in training

for distribution to hone in on the correct mean instead of locking on to the means with

the smallest error after initialization. This can lead to more accurate mean estimates

because the optimizer can hone in on a better minimum instead of quickly falling into a

bad minimum.

Covariance Accuracy

When MDNs determine parameters for a GMM there are two distinct evaluations to

make. First is how accurate the actual estimate is. A common metric for this is simply

RMSE between the truth and a point estimate. In our case, the point estimate is the

maximum likelihood point of the distribution, which we assume is the mean of the mixture

with the most weight. The second evaluation is to measure the accuracy of the covariance

estimates. In our case the covariance estimate is the covariance of the mixture with the most

weight. With this simplification, this section presents a simple method called Normalized

Covariance Error to evaluate covariance accuracy.

Normalized Covariance Error Metric.

The metric we use to evaluate covariance accuracy is a custom single value metric

called NCE. This method uses the covariance estimate for each point estimate to scale the

error to what should be a series of normal distributions. We scale the error between the
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truth and the mean of the highest weighted Gaussian distribution by the covariance of the

highest weighted Gaussian as shown:

en = A (µ − y) (147)

where A is the upper triangular decomposition of the inverse covariance matrix (see Section

II) of the highest weighted Gaussian, µ is the mean estimate of the highest weighted

Gaussian, and y is the true target for this distribution. Thus, our normalized error en should

be a vector of samples from a standard Gaussian distribution (zero mean, standard deviation

of one, all dimension independent) if our covariance estimate was correct. To characterize

how close that error is to a true Gaussian distribution, we calculate the empirical covariance

matrix of the error across all samples as:

Σen = E[eneT
n ] − E[en]E[et

n] (148)

where E[] denotes the expected value over all samples, and we perform outer products

between en and its transpose to make a matrix. The final covariance matrix Σen should be

close to an identity matrix if our error was truly from a standard Gaussian distribution. Our

final metric of how accurate this covariance was across all distribution is the Frobenius

Norm between Σen and the identity matrix:

NCE =

√√√N−1∑
i=0

N−1∑
j=0

∣∣∣Σen[i, j] − IN[i, j]
∣∣∣2 (149)

where our final normalized covariance error metric is NCE, N is the number of

rows/columns in the covariance matrix Σ, Σen[i, j] is the ith row and jth column of the

covariance matrixΣ, and IN[i, j] is the identity matrix of size N at the ith row and jth column.

When the NCE metric is closer to zero, the covariance estimate form the MDN is more

accurate. This metric should only be used to compare distributions with the same number

of output dimensions N, since as N becomes larger the Frobenius Norm will increase due to

the dimensionality, even if the covariance accuracy is about the same. Also, since the metric
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is a single number it contains no information on how the covariance estimates deviated

from a standard normal. A visual metric was explored but eventually not used for this

dissertation because the visual metric was difficult to interpret without familiarity with

advanced statistics. More information on the visual metric can be found in the Appendix

Section A. Thus we have introduced a single value metric which can be used to compare

the accuracy of covariance for MDNs with the same number of dimensions.
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V. VLF Navigation

This chapter outlines how the methodologies and ANN architecture from Chapter III

can be used to navigate with VLF signals. This chapter outlines specific implementations

of how ANNs can be used for VLF navigation. First, the problem statement is given for

VLF Navigation and the assumptions are outlined. Next, properties of VLF signals relevant

to navigation are defined, and includes how ANNs can use this information to determine

location. Next the two datasets are defined to include the input and output features of

each dataset used for the different types of ANNs. After datasets are outlined, the ANN

architecture and training methods are described. Finally, the results from the two different

datasets are analyzed for different ANN filter implementations. The results include a

section which explores the GMM loss methods from Chapter IV to determine which works

best with the datasets. The filter implementations include filtering measurements from

ANNs with classical methods, using ANN to replace propagate functions in the classical

methods, and using an ANN as a complete filter.

Problem Statement

This chapter aims to perform navigation with VLF signals. Certain details of the VLF

signals are assumed to be unknown a priori. In this problem the user does not know what is

transmitting the signals, where the transmitters are, and what protocols the transmitters use.

The area of navigation was mapped by recording empirical data which was used to train

the ANNs. One continuous data recording is referred to as a data collect or a run. The VLF

signals were recorded along with metadata such as odometry, pedometry, or accelerometer

data. The navigation problem was restricted to 2D, where each position was constrained

to a flat 2D plane. Orientation and height were not estimated. The following assumptions

were used to constrain the problem further.
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Assumptions.

This section lists the assumptions in this navigation problem:

• Signal Type – The signals of interest are in the frequency range from 0 to 22050 Hz.

This comes from the sampling frequency of 44100 Hz used by the recording device

which is an iPhone 4s or iPhone 5c. This frequency range is mostly the VLF range

(3 kHz to 30 kHz) but it also includes other bands below 3kHz. The features used

by models in this dissertation to characterize the VLF signals rely on the power of

frequency bands determined by an FFT. Phase information is discarded.

• Transmitter Assumptions – It is assumed that enough distinguishable VLF transmit-

ters exist in the environment that attempting to uniquely identify a location is possi-

ble. This is analogous in Global Navigation Satellite System (GNSS) navigation to

having enough satellites visible to get a position solution. Transmitters are assumed

to be distinguishable via either signal pattern, frequency, or power. The desired VLF

signals are emitted by stationary predictable transmitters. Any unpredictable or mov-

ing transmitter is considered to be noise.

• Map Assumptions – The location estimates are performed on a 2D map with north

and east as the x and y directions respectively. The axis has an origin at an arbitrary

point inside the recorded measurement locations, usually in the center of the naviga-

tion area. This also assumes the area being traversed is generally flat and there is no

significant elevation change over the map due to the curvature of the earth. This map

may be discretized into location bins if continuous position is not available.

115



• Markov Models – All the ANN filter models used in this dissertation have a Markov

assumption. Each filter and ANN requires only its current state to predict future

states. This is important when the ANNs are recurrent which contain a state from

time step to time step. These types of ANNs are assumed to contain all the relevant

information in their internal state.

• ANN Types – The ANNs in this dissertation are all trained by a form of SGD through

either back propagation or back propagation through time. No online learning algo-

rithms are used. This allows all the computation in training an ANN to be done off

line. The off line training does require much more computation compared to on line

position estimation. However, off line resources can have less restrictions compared

to on line position estimation. Thus, the ANN implementation can run on line on

more mobile platforms that have resource constraints.

• Supervised Training – This dissertation outlines ANNs training for many different

goals of output based on different types of input. All the ANNs in this dissertation

use supervised training which requires known target output values. This means that

for a general ANN function ŷ = fNN(. . . ), the ANN is trained using true values of y.

This is an important restriction on the problems that can use ANNs. If the desired

output of the ANN is not known by some truth source, then the ANN cannot be

trained to predict those values.

• Truth Source – We assume that some high fidelity truth source is available to train the

ANN for the desired output. For a 2D position problem, a high fidelity truth source is

some source that gives accurate 2D position. The assumption is that the high fidelity

truth source is expensive to use in an operational context due to some restrictions
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on the truth source such as size, power, weight, processing time, or availability. If

the truth source could be used in an operational context, there would be no reason

to estimate the truth source (ANN or otherwise). However the input arguments to

the ANN can be used in an operational context, because they do not have the same

restrictions as the truth source. Thus, the ANN can approximate the high fidelity

truth source output with the readily available input arguments. If the truth source is

not high fidelity and contains noisy errors, then it is assumed that enough samples

are used to average out any noise on the measurements. This also assumes that the

noise sources are zero mean in this case. If the noise sources are not zero mean, then

the estimates from the ANN may contain a biased estimate of the truth.

Signal Fabric

This section describes a conceptual method of how to determine position from VLF

measurements with a measurement ANN. Since it may be difficult to imagine how an ANN

can determine position from noisy measurements this section provide a conceptual idea for

how the ANN can output position given the noisy measurement input. This idea is only one

possible way the ANN could derive position but may not be what the ANN actually does.

The method has two distinct parts. The first part creates a meaningful representation of

the raw signal. This representation is called the signal fabric. The signal fabric represents

a condensed version of the meaningful information contained in the raw signal. We denote

the signal fabric SF as the output of some conceptual transform g(X) of the raw signal

X. Here, g then returns the signal fabric as SF = g(X). Here, g is meant to be a

conceptual function and does not have any actual realization. The function g distills the

useful information from the raw input to derive a representation for the signal fabric. By

distilling the useful information from the signal, g is robust to noisy and/or missing data.

The function g is determined by training on the expected types of input signals but has

no relation to the expected types of output. This allows g to contain general information
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for use in problems with different types of output. For example, the same signal fabric

transform g could be used for different kinds of navigation problems such as 2D position,

3D position, heading, or orientation assuming the signal fabric provides observability to

those states. However g cannot derive information from signals that were not included in

the training.

The second part of this method uses the signal fabric to determine a position. The

signal fabric space SF is transformed to the position output space Y by some conceptual

function f where Y = f (SF). f learns how the information contained in the signal fabric

relates to position. In general, the dimensionality of SF must be equal to or larger then

Y in order to cover all the possible output states unless the final output space lies on a

smaller manifold space. f learns how to relate the signal fabric to positions through training

samples. If training samples do not exist for certain configurations or positions then f can

fail to map those positions even if the information about that position is contained in the

signal fabric. f must be retrained on new samples to extend the positions which f can map

to.

A concrete example of this method is navigation with cell towers. For example, g

could be trained to create an intermediate signal fabric that represents the received power

and ID to each unique cell tower. This type of function is useful where ever cell tower

signals are present. With enough cell signals, g can learn to give a power and ID of each

tower. The second function f could then learn a mapping from the signal fabric to position.

In this example, the g function can be the same in all areas since the cell tower signals are

the same. However, each new area of cell towers requires a new f function to learn how

the expected power of each cell tower in that area relates to position. Thus, new samples

must be collected in each new area in order to retrain f so it can map the signal fabric

to positions. Note that f made no assumption on signal propagation which can allow for

distortion effects such as multi-path to distort the power at each location.
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Signal Fabric Properties.

If there did exist some concrete functions g and f , it would be useful to describe how

properties of those functions would affect the signal fabric and final output. If the signal

fabric to output location relation is turned around and the output is used to index possible

signal fabric measurements, then we can derive information about the signal fabric in terms

of changes in the output. In general the function f may not be invertible depending on the

implementation. In this case a lookup table can be created for each of the training samples.

This table would determine signal fabric from each output sample. If multiple output

samples were identical the table could output a valid set of signal fabric measurements.

Once an inverse is created, an FFT can be taken for each dimension of the signal

fabric with respect to each output dimension. This FFT transform shows how the signal

fabric spatial frequency changes with respect to position. If there is high power in the

higher frequencies then the signal fabric changes quickly with position. If the signal fabric

has mostly low frequency content, then it is much smoother and changes very little with

position. The frequency content can show how densely to sample a certain area. If the

area is not sampled densely enough then the signal fabric many be aliasing and some high

frequency content may have been lost. If the high frequency content is already near the

Nyquist frequency then the samples must be resampled at a higher density in order to be

sure that there is no aliasing occurring.

Another property based on the inverse is the derivative of the signal fabric with respect

to the output. This is done by taking a derivative of the signal fabric with respect to the

output. Now the signal fabric change in terms of the output can be examined to determine

if the signal fabric change is constant or smooth. When the derivative is changing rapidly

between samples, more samples may be required to describe the rapidly changing signal

fabric. A rapidly changing signal fabric with respect to position or time requires more

samples to describe accurately without missing changes in between samples points. When
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the signal fabric has many dimensions each dimension can be examined individually to

determine how that dimension of the signal fabric changes.

Signal Fabric Implementation.

The functions g and f are conceptual functions that are never defined. However

internally an ANN can perform similar functionality as g and f . The ANN can conceptually

be broken into two sections which represent g and f . At some point the ANN distills the

input signal into the signal fabric which contains the salient features of the input signal.

After this point the ANN decodes that information into position. This divide was the

reason for using recurrent and feed forward layers in the ANN. The concept was that

similar functionality as g is performed by the stateful layers, and functionality similar to f

be performed by the non-stateful layers. The exact output of the recurrent layers may not

be the signal fabric which is a distilled representation of the signals. Since our ANN does

determine position however, at some point internally the ANN does provide some idea of

a signal fabric.

If we do assume the signal fabric is the output of the stateful layers, we can start to

examine the properties of the signal fabric. In order to determine the properties of the

signal fabric we can use the techniques described in the previous Section V. The indexing

function f developed from the non-stateful layers then decodes the signal fabric map into a

real position based on the training signal fabric. If new combinations of the salient features

are given from a test set, the decoding function f may have unexpected results. This can

happen when the raw signals are recorded from a new environment or when the true signal

fabric created from the current transform g is not predictable from recording signals which

are close in output space.

Temporal Stationarity.

Temporal stationarity of the VLF signal fabric is an important property for determining

how well a given set of measurements reflects the future of the VLF signal fabric. The
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temporal stationarity of the VLF signal fabric is addressed in two parts, one for the

transmitters and one for the environment.

Transmitters.

Temporal stationarity of the transmitters can be divided in short term and long term

stationarity. Short term stationarity is how much the signal changes in a very short time

frame like a few seconds or minutes. Short term stationarity is not required as long as

the change can still be captured by the given measurements. In fact if many transmitters

are on the same frequency it is more difficult to differentiate the transmitters if they are

stationary in the short term. That is to say short term transmitter changes can be used to

differentiate transmitters. Short term changes could have periodic patterns which can be

identified by the ANN. Long term stationarity occurs over much longer time periods such

as months or years. Long term changes can enhance or degrade our position solution based

on if they are predictable or not. For example, an unpredictable change could be that some

transmitter no longer exists. Periodic or systematic long term changes can be modeled if

VLF measurements are recorded at the right times or if external metadata is provided. The

VLF measurements and metadata can be used to develop a pattern to determine the changes

of VLF signal fabric caused by these long term changes. For example, temperature is a

long term change which can be measured and accounted for. Thus, predictable long term

transmitter changes can be accounted for with external metadata input, but unpredictable

changes always degrade location accuracy.

Environment.

The environment consists of obstructions like houses or vehicles, noise from

transmitters whose signal cannot be used to predict location, and other properties of

the environment such as time of day, temperature, or precipitation. For example, an

unpredictably moving transmitter cannot be used to determine location. The environment

warps the signal fabric from the transmitters by adding noise or changing signal
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propagation. Radiation from environmental objects like moving transmitters in other

vehicles, or just ambient radiation from space all adds noise to the VLF signal fabric.

The changes to the signal caused by the environment can be removed if they can be

modeled. Models can take periodic inputs like season or day in order to determine how

the environment changes the signal over time. For example diurnal changes can be roughly

modeled if the time of day is known. Without a known time of day it may be difficult to

generalize the affect diurnal changes have on the environment. Long term measurements

can give insight to the long term changes caused by the environment. The model can learn

to ignore short term changes caused, for example, by moving cars by obtaining samples

when cars are not present.

Temporal Stationarity Conclusion.

The better a model can capture the effects the transmitters and environment have

on the VLF signal fabric, the better the model can estimate the VLF signal fabric. This

becomes more difficult when the transmitter and environment are non-stationary but extra

measurement inputs can be used to model this non-stationarity. Even so some non-

stationary effects cannot be modeled and degrade accuracy.

Scenarios

This section describes the two VLF navigation scenarios. This includes how and when

the signals were collected.

AFIT Dataset.

Our AFIT indoor dataset consisted of runs collected at the Air Force Institute of

Technology (AFIT) campus on Wright Patterson Air Force Base (WPAFB). These collects

were performed indoors where GPS service was limited. Due to this restriction, there

was no continuous GPS truth data available for supervised training. Instead, the campus

was manually partitioned into 50 discrete physical locations. Each room was considered a

location, as were hallway segments. A visual image of the discrete locations used is given
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in Figure 23. A unicycle antenna setup was created so the collection iPhone 5C could be

held in one hand while the unicycle was driven with the other hand as shown in Figure 24.

During collection, the iPhone 5C was used to manually tag times when the user was in each

of the 50 different discrete locations inside AFIT.

Each collection covered most locations, and the collection was rarely temporarily

paused. In small rooms, only the perimeter of the room was traversed, and for large rooms,

the middle of the room was also traversed. Hallways, lobbies, and atria were collected

at about the middle of the hallway in a straight line. In total, data was collected on 118

weekdays spanning the year of 2017 for all months except June and most of July. The first

67 collects from January to April (and one day in May) were evenly distributed to create 24

training sequences, 22 validation sequences, and 21 testing sequences. These collections

were mutually exclusive datasets collected in a temporally-interleaved fashion. The next

51 collects were from May to December and were separated into seven extra test sets –

one for each month from May to December (excluding June which had no collects). These

test sets show for how long the training set from January to April can still obtain similar

performance. For a detailed view of the number of runs for each set see Table 1.

The expected VLF sources from our collect include lights, electrical wiring,

computers, monitors, HVAC equipment, and background VLF from outside the building.

However, these sources may not stay constant across all days. For example, electrical

equipment like computers and monitors may be on or off, the HVAC system may be running

in either to heating or cooling mode, and physical objects may be moved altering how all the

VLF signals interact. The ANN must learn what VLF sources in what bands consistently

provide navigation information. While these are the expected VLF sources, the ANN may

actually use only some of these VLF sources or other unexpected VLF sources to determine

navigation information.
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Figure 23: AFIT Dataset map image with named location regions shaded red. Only each

of these red shaded regions can be used as an output location.
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Figure 24: VLF Loop antenna mounted to a unicycle. Note the iPhone 5C is held in order

to record locations manually.

Bike Dataset.

The bike dataset was an outdoor dataset. The VLF signals and metadata in Section

V were collected in independent runs. A run was a continuous data collect where the bike

started at a beginning point and returned to the point at the end of the run. Each run was

about 40 minutes long and covered a suburban neighborhood in Beavercreek OH as shown

in Figure 25. A total of 17 training runs and 13 validation runs were used to train the

model. Of the 30 runs, 19 runs were collected on different days over a 40 day span of

time in October and November 2016. The remaining 11 were collected on different days

over an 80 day span from mid-August to the end of October 2017. The validation runs were

interspersed withing the training runs, alternating between training runs and validation runs.

The test set consisted of 5 runs interspersed with the collects in 2017. For a detailed view

125



Table 1: Number of runs in each of the AFIT datasets. Each run was about 45 minutes long.

Note that hardware difficulties at the beginning of the data collection process prevented

many early runs from containing metadata.

Dataset No Metadata Metadata
Jan-Apr Training 24 19

Jan-Apr Validation 22 19
Jan-Apr Test 21 17

May 6 6
July 2 2

August 9 9
September 9 9

October 9 9
November 9 9
December 7 7

of number of runs per set see Table 2. All runs were collected with the VLF loop antenna

described in Section V attached the back of a bicycle as shown in Figure 26. All runs were

collected mostly under normal bike motion, staying to the right side of the road and turning

only at intersections. Each run made different turns at intersections resulting in different

paths for each run, however the same roads were traversed in each training, validation, and

test set.

Collected Data and Features

Our two different datasets contained some features that are similar and some that are

unique to each set. This section outlines the different features of each set. In general the

ANNs had different input features and target outputs depending on their purpose. The

features form each dataset may be used as inputs to ANNs or as output targets. One input

data source for both datasets consist of transformed time series VLF signals which we
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Table 2: The number of data collects for the training validation and test sets split up by

year. Each data collect was about 45 minutes long. Note that early collects encountered

hardware problems that prevented metadata collection.

Set Name
No Metadata Metadata

2016 2017 Total 2016 2017 Total

Train 10 7 17 10 6 16

Valid 9 4 13 5 4 9

Test 0 5 5 0 5 5

refer to as the VLF features. All other data sources are referred to as metadata. Metadata

was collected at the same time as the VLF signals but consisted of many different kinds

of features such as GPS location, accelerometer data, odometry data, and other data. Any

combination of the VLF features and the metadata may be used as inputs to ANN or as

target outputs depending on the goal of the ANN. Different output schemes were required

depending on the target output type such as discrete or continuous target output types.

VLF Features.

This section outlines the VLF features used by the ANNs. This section first outlines

the collection of the signals, then defines the processing required to turn the raw signals

into features.

Loop Antenna.

VLF signal frequencies range from approximately 3kHz to 30kHz [40]. These

frequencies afford a relatively compact loop antenna design. Additionally, because these

frequencies subsume the human audio frequency range, a standard microphone input can

be used to collect most of the bandwidth of the signals received by a VLF antenna.
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Figure 25: Area traversed by bike run. Note the suburban environment has houses, trees,

and power lines near the roads.

The device for our loop antenna was designed by Dr. James Plesa [78] for our VLF

navigation experiment as shown in Figure 27. The loop antenna has 41 windings and a

diameter of 31.75cm. The loop antenna is attached to the 3.5mm Tip Ring Ring Sleeve

(TRRS) microphone input jack of an Apple iPhone 5C for recording. No filtering or

amplifying of the signal was performed at the antenna. The VLF signals of interest in

this dissertation are in band with human speech and allow the iPhone microphone receiver

to record VLF signals from the antenna. The VLF signals are sampled at a rate of 44.1 kHz

and recorded in Waveform Audio File Format (WAV) files for later post processing.

A 1.5k resistor was put in series with the loop antenna to achieve the minimum

resistance required for the iPhone to recognize a microphone input. The only calibration

required was to determine the size of the resistor on the antenna so the iPhone recognized it
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Figure 26: Bicycle with loop antenna attached to the back.

as a valid microphone source. The same antenna was used for all experiments, so anything

that was particular to this antenna was present in the entire dataset. This prevented the

models from using antenna induced characteristics to differentiate location. During signal

collection the antenna loop was aligned with the horizontal plane of the ground.

Signal Preprocessing and Feature Generation.

To prepare the VLF signals for developing a navigation model, the raw signals were

preprocessed into samples. The VLF signals were partitioned into 100ms time segments

and several frequency-domain features were computed for each segment. Frequency-

domain features for each segment were calculated based on a Fast Fourier Transform (FFT)

of the signal in that segment. A sample consisted of the set of features of one time segment.

Samples were labeled according to the antenna’s position where they were collected. To

summarize the process:

1. Partition collected signal into 100ms time segments.
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Figure 27: Loop antenna used for data collection. The design of the antenna is attributed

to James Plesa [78].

2. Transform the signals from time-series to frequency domain using a Fast Fourier

Transform (FFT) on each time segment to determine magnitude in each frequency

bin from Equation 150.

3. Stack features from each segment into time-series sequences of frequency domain

features.

This process created sample sequences that were used to train a model, and after

training, to determine location. The samples were visualized using a tool called a

spectrogram. The spectrogram showed how the power in each frequency changes over

time. A spectrogram was displayed as a heat map of the signal’s spectral power in each

frequency bin (vertical axis) over time (horizontal axis), as shown in Figure 28. Note that

the features used in for the ANN model are magnitude values while a spectrogram shows
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Figure 28: Spectrogram of one data collect. The vertical axis shows power in each of the frequency bins and horizontal axis is time

discretized to the segments. Thus, each column is the result of one FFT transform of one time segment and then the time segments are

stacked horizontally over time to make the spectrogram.

power, which is simply magnitude squared. Next we describe how each of the spectral

magnitude values are computed.

The following equation describes the spectral magnitude features for one time

segment:

xtw
k =

∣∣∣∣∣∣∣
pwtw+N/2−1∑
n=pwtw−N/2

xn exp
(
−i2πkn

N

)∣∣∣∣∣∣∣ k = fl, . . . , fu
0<= fl< fu<N

(150)

where xtw
k is the magnitude of the frequency bin k for time segment tw. N is the number

of amplitude samples to use for each time segment, which will also determine the segment

length when the sampling frequency is known. The scalar xn is the amplitude value for

the nth sample in the VLF signal. The variable pw is the number of amplitude samples

between each segment center. The index of the time segment is tw. Each time segment
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was positioned so that amplitude sample number pw × tw was the center sample in the time

segment tw. Thus if pw = N, then the second half of one time segment would overlap with

the first half of the next segment. For example, assume time segments contain one second of

amplitude samples, and there is one second between time segment centers. In this example,

the first one second time segment is centered on the sample at 0.5 seconds, and the next

one second time segment is centered on the amplitude sample at 1.0 seconds. This means

that the time segments overlap from 0.5 to 1.0 seconds. However our features ended up not

using any overlap between time windows. The two variables fl, fu set the lower and upper

limit for the frequency bounds to be included in the features. Our experiment required to

reduce the overall features due to memory and computation limitations. Our VLF features

had an upper bound of fu = 11.025 kHz and a lower bound of fl = 0kHz.

One additional data preparation step was taken prior to training. Many machine

learning models (including ANNs) are sensitive to differences in the scales of features.

Several techniques were used to reduce these differences. Before any samples were

used for training they were transformed using the PCA algorithm [43, 73, 109]. PCA is

the decomposition of multidimensional data into components, sorted by variability. Our

approach also adds whitening to the PCA algorithm which scales all the variances to one.

PCA is commonly used to reduce the dimensionality of the data by removing dimensions

with low variability [43]. However, our method used all the dimensions because results

were adequate without removing dimensions. PCA was used because the models in this

experiment trained much faster when PCA was used compared to when PCA was not used.

Metadata Features.

Metadata was collected at the same time as the VLF signals. Two cell phones were

used to record the metadata. An iPhone recorded the following metadata: accelerometer

(∆v), gyro (∆θ), magnetometer heading, true heading (correction of magnetic heading),

GPS location, and location name string. A second android cell phone recorded metadata
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related to workout data. This data included heart rate, bicycle wheel odometer data, bicycle

crankshaft odometer data, and pedometer step data. Time synchronization between the two

devices was accomplished with cell tower timing protocols. All of this data was time tagged

but the update rates for each data stream were not the same. For example, the location

name was updated when the location was changed, but wheel odometry data was recorded

every time the wheel made a full revolution. Also some data was generated based on the

recording time. This metadata included the percent through the current day and a scalar

indicating the current season. The current season scalar was determined from a sine curve

of unit amplitude that peaked at the summer solstice and had a low at the winter solstice.

This allowed datasets collected over a full year to understand seasonal effects. A summary

of the different types of metadata used and when they are available is given in Table 3.

Using many different types of update rates created a problem when trying to use all

the possible features as input for an ANN. The ANN expected all input at once and did

not allow for only partial data. This required all data to be aligned at the same rate. Thus,

all of this metadata was further processed for use in the model when the time steps do not

match up. All of the metadata was processed to align with the center of the VLF features

time segments. The processing gave a unified vector of input for the ANN to process.

Different processing was required for different types of metadata. All the continuous

absolute data sources were interpolated between time steps to the center of the time

segment. The interpolation function between time steps was linear. For example, GPS

position was interpolated to the center position for the time segment.

Incremental measurements were additive and summed up from the beginning of the

time segment to the end, and only the time segment edge values were interpolated. For

example, the accelerometer ∆v is summed up over the entire time segment to evenly

distribute the changes in acceleration. For example, if 100 evenly spaced accelerometer
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Table 3: Metadata Types. Table showing the different types of metadata used and the

properties of each metadata variable.

Metadata Name Data Type Synchronization Method Available

Accelerometer ∆v R3[x, y, z] Summation All

Gyro ∆θ R3[θx, θy, θz] Summation All

Magnetometer Heading R[φ] Interpolation All

True Heading R[φ] Interpolation All

GPS Location R3[lat, lon, alt] Interpolation All

Location Name String String Nearest All

Heart Rate R[hr] Interpolation All

Pedometer walking speed R[sp] Interpolation Walking Only

Bicycle Wheel speed R[sw] Interpolation Bike Only

Bicycle Crankshaft speed R[sc] Interpolation Bike Only

Percent Through Day R[th] Generated All

Season Value R[ts] Generated All

measurements were taken during the time segments, the value for the time segment is the

sum of all the acceleration measurements since the last center of the time segment.

Discrete measurements, such as the location name string, were chosen by the discrete

value that occurred at the center of the time segment. If the discrete value was a string, the

string was changed to one hot representation across all possible strings for input to ANNs.

For example if there were 10 possible string values, a vector of size 10 with all zeros except

a single one, would represent that single string. If the location name changes during a time

segment, the value at the center of the time segment is used for the entire time segment.
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The generated time related measurements were calculated at the center of each time

segment and required no further processing.

All metadata was normalized before given to any ANNs. The normalization

determined a bias and scaling factor to make the metadata zero mean and unit variance

for each metadata feature. Unless otherwise stated, the transform is determined using only

training data and never validation or test data.

Certain metadata were only available for certain data collects. For example, bicycle

wheel odometer data was only available for data collects on a bicycle. Pedometer step data

was only available for walking data collects. Also, some collects did not contain metadata

due to hardware malfunctions but still contained VLF signals. These missing metadata sets

are included in training/validation/testing for non-metadata datasets but are not included

for datasets which require metadata. For a detailed view of the number of sets included in

each experiment see Tables 1 and 2.

Input Features

The VLF features and the metadata features were available as input features for the

ANNs. In general the entire feature set was available for ANN input. However, depending

on the purpose of ANN, only certain features may be desired as input for the ANN. For

example, the state predict ANN, outlined in Section III, was given only previous state

(position) as inputs. After a set of features was determined, the features were concatenated

together into one input vector.

Output Features

Output features for many ANNs were some kind of position target. However, the

output features differed depending on the dataset. The bike dataset generally had accurate

GPS data for truth. The GPS location data provided more options for output feature types.

The AFIT Dataset was collected inside buildings where GPS accuracy was poor and thus

135



limiting options for output features. The full set of output features were broken into

two types–discrete locations and continuous locations. The bike dataset with high GPS

accuracy was the only one that supported both continuous output locations and discrete

locations. To obtain discrete locations, continuous locations were binned into discrete

locations. However, the AFIT Dataset with poor GPS accuracy only had discrete locations

based on the name of the area while recording. The discrete locations were manually

recorded during collection. Thus, while the AFIT dataset had discrete output features, it

did not have continuous locations because there was no underlying continuous locations.

This section outlines the different types of output features used in both datasets.

Local Level Coordinates.

The continuous output features used the latitude and longitude from the GPS metadata

to determine location. The GPS latitude and longitude measurements were converted to a

local level frame for use as output features. To convert to the local level frame, first the GPS

measurement was converted to the GPS Earth Centered Earth Fixed (ECEF) frame. Next,

the origin was moved to a fixed position in the middle of the collect which was the same

for all datasets in the same area. Finally, the coordinate frame was rotated to make the x

direction point north, the y direction point east, and the z direction point down. This created

a flat local frame on the surface of the earth near the area of interest that was only valid for

the local region due to the curvature of the earth. This local level coordinate system served

as the basis for the continuous output features and different types of discrete features. An

example of this kind of local level output is shown in Figure 29.

The continuous local level output was biased and scaled to have zero mean and a

standard deviation of one like all metadata features. The scaling allowed the ANN in

this research to train more quickly. While the actual values given to the ANN were the

normalized data, all figures and graphs were converted back to unscaled versions for
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Figure 29: Example of one run with local level coordinates. This is the transformed local

level coordinates in meters.

readability. The local level coordinate output can be used as the target output to train

regression models as well as probability parameter models such as MDNs.

Discrete Output.

The discrete output locations determine a probability of a location bin. The discrete

outputs based on the local level frame were binned by the clustering method described in

Section II. The 100 center points of each bin are shown in Figure 30. Each continuous

location on the map is classified as the bin whose center is closest to the given point. The

clustering algorithm used only the positions from the training dataset in order to determine

the center points.
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Figure 30: Classification region center points (red circles) determined by a k-Means

clustering algorithm with 100 clusters.

The discrete output locations not based on the local level frame were the names of the

location from the AFIT dataset. The names of the locations were manually recorded during

the collect. The total number of locations for each collect was the total possible locations.

The total number of locations for each collect did not change even if some locations were

not visited during the collect. In this dissertation, the locations names were regions of a

floor plan that were selected for recording. An example of how the regions were partitioned

is shown in Figure 23.

Each discrete method had the same style final target output no matter what he

underlying classes represent. The final target output data was a binary vector consisting
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of zeros and ones. The target vector had only one non-zero value of 1 at the index of the

correct class. Thus, the target one hot vector was a valid probability distribution with all

the probability at the correct class. When the ANN attempted to predict the probability

of the input, the ANN tried to match the target one hot probability vector as closely as

possible. Thus, the ANN assigned probability to classes in an attempt to match the target

probability vector. Using this probability distribution, many different metrics can be used

to reject outliers or provide confidence in a position estimate.

Classification Weighted Regression Output.

This section outlines a method to obtain interpolated continuous output from a discrete

classification output ANN. This form was motivated because the pure regression output

models had been shown by experiments in this dissertation to have poor MSE even when

compared to classification. The binned locations had better Root Mean Square (RMS) error

compared to regression even while suffering from the loss in precision by binning locations.

Next we show how to interpolate between bin centers to improve this RMS error further.

To interpolate the discrete classification, first an ANN was trained to output classes

based on locations with known coordinates. Next, an MLP layer with two perceptrons (one

for each axis x, y) was added to the end of the pre-trained classification ANN. This MLP

layer had its weights initialized to be the center coordinates of the output class labels used

to train the ANN. This MLP layer now calculated a weighted average of all the output

positions based on probability. The weighted average resulted in smoothly transitioning

between classes which reduced error when locations were on the edges of the classes. This

combined ANN was also be further trained to fine tune the pre-trained weights and new

final output layer to further optimize the output.

Probability Model Output.

The probability model outlined in Section II was used to provide a continuous output

while also providing a probability distribution of the position. For this output type, the
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ANN determined the parameters of a probability model. The ANN was trained to increase

the probability of the correct output position. A probability model provided a probability

over the entire output space instead of being required to output only one position. This

dissertation used a GMM as the probability model. 2D multivariate Gaussian distributions

were used for the 2D position problem. Thus, each Gaussian distribution in the Gaussian

Mixture Model had two dimensions as the output space for the 2D position estimate.

Unless otherwise stated, the GMM loss functions used the upper triangular A form of the

inverse covariance matrix to estimate covariance for GMM. Also the GMM loss functions

estimated seven Gaussian distributions per mixture.

Base ANN Model

Now that the problem, inputs, and outputs have been outlined, the actual architecture

of the base ANN model is detailed. The ANN given is a concrete form for ANN blocks

that represented many different functions in Chapter III such as measurement ANNs, state

predict ANNs, complete filter ANNs, and others. The inputs and outputs to each ANN

were tailored to the goal of the ANN as stated in Section V. The specific purpose of the

ANN determined what inputs are given to the ANN and what the target output type was.

The base ANN model used in this dissertation was an ANN with LSTM and MLP

layers. A graphical example image of the model is shown in Figure 31. The parameters

(such as number of layers) of the ANN were chosen to reduce the loss on the validation

sets. These were not necessarily the optimal parameters but produced favorable results for

different ANN goals. The ANN started with two LSTM layers of size 500. The LSTM

activation function was a tanh and the inner gate function was a hard sigmoid function.

Each of the weight matrices in the LSTM layers had a dropout probability of 0.2 during

training. Below the LSTM layers were 21 MLP layers each with a size of 50 hidden units.

The MLP layers had a tanh activation function. After each MLP layer there was a layer of
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Figure 31: Graphical Image of the model used to implement the approach of this

dissertation. Information flows from top to bottom. The input and output layer sizes are

changed depending on the dataset.
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dropout with a probability of 0.25 during training. Between every two MLP layers there

was a residual connection from the first layer to the second layer as defined in Section II.

Only the first MLP layer had no residual connection. This first MLP layer resized the output

size of the LSTM layers to the MLP layers. The resizing allowed each residual connection

to be added element wise with no padding or resizing.

The final layer depended on the type of desired output. If the output is discrete

classification, as outlined in Section V, then the last layer has as many outputs as there

are output classes. A softmax activation is performed on this final layer to normalize the

output values to a probability distribution. The loss function used for discrete classification

is categorical cross entropy.

If the final layer was continuous output, as outlined in Section V, a two node dense

layer with linear activation was used, where each node represented the north and east

estimate. The loss function used for this type of output was MSE loss.

The final layer for a probability model output, as outlined in Section V, was a dense

layer with each output representing parameters for the probability model. For probability

model output, the number of outputs was determined by the representation of the covariance

matrix and number of mixtures in the model. Also, a specific activation function tailored

to the representation of the covariance matrix was required to make a valid probability

parameter output.

Our base ANN has a general equation:

ŷk = aNN(ak,bk, . . . ,hNN
k−1|θ

A) (151)

where aNN() is the function for the ANN, and represents the architecture of the ANN. The

ANN function can take multiple input vectors ak,bk, . . . which are concatenated together as

one input vector. hNN
k−1 is the previous state of the ANN if a recurrent ANN was used. Also,

if the ANN contained state (making the order of the inputs is important), the subscript

k refers to the time step of that vector. θA represents the parameters of the ANN, for
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example the weights and biases of each layer. The number of parameters θA depended

on the architecture of the ANN. The given parameters must match the expected number

of parameters according to the architecture of the ANN. The output of the ANN is ŷk.

The ANN output is the estimate of the target output, which depends on the type of output

desired.

The base ANN also had a slightly different form when the ANN received inputs which

were functions of the ANN output. The simplest case was when the output of the last time

step was directly used as input. The equation for this type of base ANN is:

ŷk = aNN(ak,bk, . . . , ŷk−1,hNN
k−1|θ

A) (152)

The difference between the ANN in Equation 151 and this ANN is that the latter uses its

own output ŷk−1 as input. By feeding the output back into the ANN as input, the ANN can

learn dynamics of the problem, similar to a state predict function in a standard filter. This

approach is useful if for example the purpose of the ANN is to replace a state prediction

block in a filter. Besides these considerations, the ANN had the same architecture as the

ANN shown in Figure 31.

ANN Training.

The training parameters were chosen to minimize the loss of the validation sets. These

parameters (such as learning rate) were not optimized for a specific problem. Rather,

they were chosen to work well for many different types of problems. Training was done

in batches across all training runs. Each batch contained 64 sample sequences selected

randomly from all possible runs. Each sample sequence contained 100 time steps. The

weights of the model were updated after each batch. The total number of batches was

determined by the total possible sample sequences. Instead of training on all possible

sample sequences for each epoch, only as fraction of the total was used for each epoch. We

used one hundredth of the total possible samples before claiming an epoch was complete.

Using this method, it was possible to repeat overlapping sequences even in a single batch.
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However, due to the large number of possible sequences (hundreds of thousands) this

repetition was unlikely and did not pose any over fitting problems.

The LSTM layer input and previous output weight matrix had an L1 regularization

value of 0.0001. The MLP weight matrices also had an L1 regularization value of 0.0001.

The overall learning rate was 0.0001. During training, the learning rate was reduced by a

factor of 0.8 if after 10 epochs the loss function was never reduced. The training algorithm

then waited at least 10 more epochs before reducing the learning rate again. The number

of training epochs was 500 for each model unless otherwise specified.

Also, if the output was fed back as an input, as shown in Equation 152, the previous

outputs were precomputed for each batch, since the samples were selected randomly. This

was important to provide a realistic training environment where the ANN learned how

to use its own output as input. Using true output as input resulted in over fitting to the

unrealistically good input and prevented learning real relationships from the rest of the

input.

For evaluation purposes the sequences were constructed slightly differently. Unlike

training which used small subsequences and started with a fresh ANN state for each

subsequence, evaluation was performed on sequences consisting of an entire run. This

allowed the internal state of the ANN to maintain the state for the entire run and improved

performance compared to the training scores.

AFIT Dataset

This section develops implementations of the ANN and filter integration framework

from Chapter III for the AFIT Dataset. First, this section describes how measurement

ANNs were trained to output discrete location. Next, the measurement ANNs were

integrated into a discrete particle filter. Next, another ANN was trained to predict discrete

location based on previous discrete location, called a state predict ANN. Then the state

predict ANN was integrated into the discrete particle filter with the measurement ANNs.
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Finally, complete filter ANNs were trained to use previous discrete location information as

well as measurements to predict the next discrete location.

AFIT Dataset Measurement ANN.

This section analyzes the results of training measurement ANNs using the architecture

outlined in Section V trained on the dataset described in Section V. Two measurement

ANNs were trained to predict discrete location, one using the VLF signals only and

another using VLF signals and Metadata. The metadata included accelerometer, gyroscope,

magnetic heading, true heading, heart rate, walking speed according to step tracking,

percent through day, and season sine wave from Table 3. Each of the training, validation,

and test datasets were evaluated with the final trained models to obtain a set of predicted

locations the antenna traversed. The ANNs generated location probability predictions

for each dataset. The accuracy ( correct predictions
all predictions ) of each dataset is shown in the Table 4

along with 95% confidence intervals [44] around the accuracies. The confidence intervals

represented the chance that if we sampled from the same distribution as the given data, we

would have a sample accuracy inside the error bars 95% of the time.

In addition to the confidence intervals, we calculated the Cohen’s Kappa value for each

set. The Cohen’s Kappa value represents how far from “guessing” the classifier performed

[44]. For example, if 90% of the samples came from one class, the classifier could achieve

90% accuracy by only guessing that class. Cohen’s Kappa value takes class distribution

into account and provides a metric to show how close to guessing based on the class

distribution our classifier preformed. Values near and below 0 are considered very poor

and indicate that the classifier is not performing much better than guessing. Values above

0.4 are considered to be better and indicate that it is unlikely the classifier is guessing. In

our case all the Cohen’s Kappa statistics were above 0.4, thus our classifier was most likely

not guessing from the class distribution as shown in Table 4. This property shows that our
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Table 4: Performance comparison of the AFIT Map measurement ANN without metadata

and with metadata.

No Metadata

Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 93.6% 0.934 2.47%

Jan-Apr Validation 76.6% 0.760 2.06%

Jan-Apr Test 79.6% 0.790 2.59%

May 75.2% 0.746 4.43%

July 64.3% 0.633 9.41%

August 70.2% 0.694 4.41%

September 66.1% 0.651 4.07%

October 68.6% 0.678 4.49%

November 61.5% 0.605 4.47%

December 58.6% 0.575 4.96%

Metadata

Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 95.0% 0.948 2.72%

Jan-Apr Validation 78.7% 0.782 2.77%

Jan-Apr Test 81.5% 0.810 2.86%

May 75.1% 0.744 5.51%

July 63.3% 0.674 9.41%

August 72.5% 0.718 4.41%

September 71.2% 0.703 4.07%

October 69.9% 0.692 4.49%

November 59.1% 0.580 4.47%

December 57.5% 0.564 4.96%

146



classifier obtained position information from the VLF signals and was not simply guessing

a position.

The models achieved high accuracy on the training and validation sets. For example,

the metadata model achieved a validation accuracy of 78.7% with a 95% confidence interval

of 2.77%. However we must look at the test sets to draw any conclusion about accuracy

since we may have over fit our model to the training and validation datasets. We next

evaluate the model on the sequestered test sets as described in the next section.

AFIT Dataset Measurement ANN Test Results.

Eight separate sequestered test sets that were not used for weight training or hyper

parameter selection were evaluated against our trained measurement ANN. To evaluate test

data collected in the same time frame as the training and validation data, the first test set

was interleaved with the training and validation sets (while ensuring the three sets contained

mutually exclusive data collection sequences). On this test set, the metadata model obtained

an accuracy of 81.6% with a 95% confidence interval of 2.86%. However, our confidence

interval only applied to data with the same distribution as this test set. Future sets may vary

slightly due to changes in the VLF signals over time.

To shed some light on the stability of model’s performance over time, seven other test

sets were collected after the three interspersed sets. These test sets consisted of runs that

were collected from May 2017 to December 2017. Since the the training and validation sets

were collected from January to April 2017, this final test sets shared no temporal overlap

with the training or validation data. Thus, the final test sets allowed an evaluation of the

model’s resilience to changes in the VLF signals months after originally VLF-mapping the

navigation area. As shown in Table 4 and Figure 32, the accuracy of the model on the final

test sets ranged from 75.2% to 57.5%.

Now we explore the accuracy of the test sets over time using Figure 32 to see if there is

any trend. The accuracy of each collect is expected to vary slightly from day to day due to
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Figure 32: Accuracy of AFIT dataset with no metadata results compared to accuracy of

AFIT dataset with metadata. 95% confidence bars are included for all accuracy estimates.

Note the July confidence bound is larger due to only 2 runs in July.

changes in the VLF sources in the environment. For example, some electric machinery, like

the HVAC system, may only turn on during certain times the day. However, over time our

accuracy may degrade due to permanent changes in the environment such as adding new

VLF sources or removing existing VLF sources. Our test sets showed that some changes

likely did occur over time, since the later sets performed worse compared to the earlier

sets. Specifically there was a large drop in November which continued to December. This

drop could be due to some permanent change in AFIT that caused previous VLF signals to

no longer match the new environment. However, considering this time period was months
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after the training validation data, the performance is still quite high. Using more recent data

for training could allow the ANN to learn the changes over time and improve performance.

Also, the performance for July was worse compared to the neighboring months. However,

July contained only two runs which increased its confidence bounds to well within the

performance of the neighboring months. Thus, the performance may actually have been

comparable to the neighboring months if more runs were collected and the confidence

bounds were decreased.

Another facet of the results to analyze is the performance of each location region.

While the average accuracy was 81.5% in the metadata model interspersed Jan-Apr test

set, some classes had much lower accuracy. For example, in Figure 33, where the average

accuracy of each class is color coded, it becomes apparent some classes had very poor

accuracy. Specifically, a row of rooms on the bottom right had very bad accuracy (well

below 50%). Analysis of the confusion matrix showed that these four rooms were actually

confused with each other. This may be due to the fact that the four rooms on the bottom

have the same layout. Each of these locations regions was a classroom with identical

computer and furniture setups. This similarity may make it difficult to distinguish between

rooms using VLF features with no additional information. Thus, it is important to note that

not all locations may be distinguishable from each other depending on the VLF signals in

that environment.

In conclusion the metadata measurement ANNs achieved accurate locations on the

dataset. The measurement ANNs can be used to make good predictions months after the

collection of the data used to train and validate it. However, as expected, the model can

become confused about locations when the VLF signals do not provide enough information

to differentiate between different locations.
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Figure 33: Accuracy of AFIT dataset with metadata results for each location. The accuracy

of each room is colored where Red is near 100% and blue is near 0%. Notice the rooms at

the bottom with poor accuracy which were confused with each other.

AFIT Dataset with Discrete Particle Filter.

In this section we integrated a discrete particle filter with the two measurement ANNs

from Section V. The discrete particle filter was chosen because the AFIT dataset output

was discrete. Other filters such as a Kalman filter usually estimate continuous outputs such

as position; however, this dataset has discrete output. Thus, a discrete particle filter was

chosen to represent discrete locations with particles. Each particle was assigned a discrete

location bin and an associated weight. The weight of that particle was changed by the filter

to reflect the probability of the user being in that location.
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A state transition matrix was used to propagate the particle probability between

time steps and before the measurement update. The state transition matrix contained the

probability to transition from one location to all other locations. The transition probabilities

were calculated from the truth data in the training set from Jan-Apr. The transition matrix

was heavy on the diagonal since it calculated transitions for every 100ms and only around

100 transitions occurred in a run out of about 24k time steps. This means less than a 0.5%

change of transition per time step. Thus, the user usually stayed in the same location.

To propagate a state probability from one time step to the next, the state probability

at each location was simply multiplied by the state transition matrix. To incorporate the

measurement probability from the Measurement ANN, the measurement probability was

element wise multiplied by the current state probabilities. The result of this operation was

normalized to sum to one and become a valid probability distribution. The process then

repeated for the next time step as shown:

xk+1|k = Φxk

x′k+1 = xk+1|k �mNN(zk, θm)

xk+1 =
x′k+1∥∥∥x′k+1

∥∥∥
where xk is our state (location probabilities) at time k, Φ is the state transition matrix,

mNN is the trained measurement ANN with weights θm, and zk is our measurement (VLF

features) at time k.

The biggest impact of the discrete particle filter was to smooth out transitions between

locations. Near the boundaries of locations the measurement ANN output started to

alternate between the two adjacent locations. The discrete particle filter smoothed out

the flip flopping by favoring the current location until the next location had much higher

probability from the measurement ANN compared to the current location.

The results of integrating the discrete particle filter with the measurement ANNs from

Section V in general improved the performance by around 2% for each set compared to
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the measurement ANN only solution as shown in Figure 34 and 35. A detailed view of

the performance is shown in the Appendix Table 17. Thus, by filtering the output of the a

measurement ANN we improved performance.

Figure 34: Accuracy of AFIT dataset with measurement ANN no metadata results

compared to accuracy of AFIT dataset DPF with state transition matrix integrated with the

measurement ANN with no metadata. 95% confidence bars are included for all accuracy

estimates.

AFIT Dataset State Predict ANN.

Next we created a state predict ANN for the AFIT dataset. The state predict ANN

outputted the probabilities of each discrete location in the same fashion as the output from
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Figure 35: Accuracy of AFIT measurement ANN metadata results compared to accuracy

of AFIT dataset DPF with state transition matrix integrated with the measurement ANN

with metadata. 95% confidence bars are included for all accuracy estimates.

the measurement ANNs in Section V. However, the state predict ANN used the previous

state probabilities as input and not VLF features. Since the position estimates were discrete,

the ANN state predict function acted like a state transition model. The state predict ANN

remembered previous state transitions in order to predict the next state. For example, the

ANN may learn that some rooms are inaccessible from other rooms, or for how long certain

rooms are visited. This extra information may make a more accurate state predict function

compared to the simple memoryless state transition model used in the previous section.
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The state predict ANN was trained in the same method as the measurement ANNs

except the input for the state predict ANN was the last true location as a one hot vector

instead of VLF features. The measurement ANN was trained on the Jan-Apr training

set and validated on the Jan-Apr validation set. The results of the training was almost

perfect, since the ANN learned to output the inputted true location as the prediction which

was usually correct. These results were expected since, if we input the last true location,

we expect the the ANN to be able to output the next location with near perfect accuracy.

However, inputting the last true location is unrealistic at runtime since our predictions will

not be perfect. If the ANN was given the estimated previous location as input, the ANN

would quickly become inaccurate as the truth and predictions propagate away from each

other. Thus the results are only given when integrated in a discrete particle filter in the

following section.

AFIT Dataset Discrete Particle Filter with State Predict.

In this section we integrated a discrete particle filter with the measurement ANNs from

Section V and the state predict ANN from the previous section. This integration was similar

to the discrete particle filter in Section V but instead of using a state transition matrix, the

state predict ANN propagated the state probability from one time step to the next as shown:

xk+1|k = fNN(xk, θ f )

x′k+1 = xk+1|k �mNN(zk, θ)

xk+1 =
x′k+1∥∥∥x′k+1

∥∥∥
where fNN is our trained ANN state predict function with weights θ f .

To show the results, a comparison of the no metadata DPFs with the state transition

matrix filter and the no metadata DPFs with state predict ANN is shown in Figure 36. The

full results of the state predict ANN integrations are shown in the Table 18.
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Figure 36: Accuracy of AFIT dataset DPF from data integrated with measurement ANN

no metadata results compared to accuracy of AFIT dataset DPF from state predict ANN

integrated with the measurement ANN with no metadata. 95% confidence bars are included

for all accuracy estimates.

The figure shows that on average the estimates from the state predict ANN integration

were around 5% worse compared to the state transition matrix estimates. The poor results

revealed that our state predict ANN may have learned to become a poor identity function

instead of a propagate function. This may have occurred because most of our time steps

remained in the same location. The similarity of input and output was due to a high update

rate of 100 ms.
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Attempts to encourage the ANN not to become an identity transform proved difficult.

Attempts included using different architectures and different update rates, but none proved

useful. The entire training algorithm may require modification in order to coax the ANN to

learn useful dynamics. However, it was possible for an ANN to learn dynamics as we shall

see in the next section when the ANN was trained to be a complete filter.

ANN as Filter for AFIT Dataset.

Finally we trained ANNs to be complete filters for determining position in the AFIT

dataset. These filter ANNs were given as input the VLF signal features for the AFIT dataset

(like the measurement ANNs) as well as the position estimate from previous time step. The

output was again the probability of each discrete location. The complete filter ANNs, unlike

the state predict ANN described in Section V, learned extra information from the previous

estimate in order to build some system dynamics model.

Two complete filter ANNs were trained with where one version one did not include

metadata and the second version did include metadata. Both models included VLF features

and the previous location probability estimate. A comparison of the complete filter ANN

to the previous best model, the DPF with state transition matrix, is given in Figure 37 and

Figure 38. The full results of the complete filter ANN are shown in the Appendix in Table

19.

The figure shows that our filter ANNs outperformed the DPF models in the training,

validation and interspersed test set. When comparing on the later test sets, the filter ANN

usually performed about the same or better compared to the DPF. This performance

increase showed that the complete filter ANNs learned a better dynamics model compared

to the filtering with the DPF state transition matrix. The improved dynamics model most

likely leveraged the state in the ANN to keep track of state history in order to improve the

dynamics model. The internal changing state is in contrast to the DPF which had a static

156



dynamics model that did not use a time history of the states to change location transition

probabilities.

Figure 37: Accuracy of AFIT dataset DPF from data integrated with measurement ANN no

metadata results compared to accuracy of AFIT dataset Filter ANN. 95% confidence bars

are included for all accuracy estimates.

AFIT Dataset Conclusion.

After all the results from the different kinds of models some trends became clear.

The first trend was that models with metadata consistently performed better compared to

the same model without metadata. The only exception to this rule was that the last two

months (November and December), usually had worse accuracy for the metadata models.
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Figure 38: Accuracy of AFIT dataset DPF from data integrated with measurement ANN

metadata results compared to accuracy of AFIT dataset Filter ANN with metadata. 95%

confidence bars are included for all accuracy estimates.

This seems to suggest that the metadata did not generalize well to that many months in the

future. This was unexpected since the metadata should be consistent across time. The VLF

features are the features which were expected to degrade over time. The reason for the lack

of generalization of metadata is unknown.

Another trend was that including previous position estimates improved overall filter

estimates except with the state predict ANN models. As was expected, the DPF and filter

ANN models performed better compared to the measurement ANN alone since they used

previous position estimates to aid in determining the final estimate. However, the state
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predict ANN integrated filter had worse performance. As previously stated this was most

likely because the state predict ANN did not learn dynamics but instead learned the identity

transform due how the state predict ANN was trained.

Following these trends, the model with the best accuracy performance was the filter

ANN with metadata model. This model performed better compared to the DPF with

metadata. The superiority of the complete filter ANN supports the idea that a properly

trained ANN can outperform a simple filter by learning information the simple model does

not contain. However, this large ANN solution may be difficult to understand, since it

is a complete “black box” solution. In conclusion, ANNs can improve filter solutions by

either integrating with an existing filter or performing the filtering itself. Next we move to

the bike dataset problem which was a continuous dataset in contrast to the AFIT discrete

dataset.

Loss Function Exploration

Before exploring results for the bike dataset we must first determine to what extent the

different improvements in Section IV had on the overall error for probability model output

problems. To explore the performance we trained ANNs with different combinations of

GMM changes and analyzed the results to determine which GMM loss function was best

for the bike dataset problem.

GMM Loss Changes.

Most of our GMM loss changes were for the GMM custom loss function outlined

in Section IV. All of these changes were compared to a base GMM loss function with

no modifications. When we used a GMM custom loss function, the specific custom loss

function we used was a MSE loss function. MSE loss was preferred since our output

was position and MSE relates directly to distance. We include a quick outline of the

loss functions changes that were made and how they alter the loss function. We actually

159



combined all possible combinations of changes to see how they interact with each other.

The possible changes to the loss functions are as follows:

• Probability Simplification (PS)– Probability simplification reduces numerical errors

and can discourage one mixture to dominate as described in Section IV. Applicable

to all GMM Loss functions.

• GMM Custom Loss Function Scaling– Allows β scaling parameter between means

and covariance. We used values from 100 to 10e9 in increments of powers of 10 for

a total of 10 different scalings. Applicable only to GMM Custom Loss functions.

• Gradient Correlation and Scaling (GCS)– Reintroduce covariance information to

custom loss function derivative previously found in unmodified GMM loss as

described form Section IV. Applicable only to GMM Custom Loss functions.

• Gradient Normalization (GN)– Normalize magnitude of gradient for means and

covariances in GMM Custom Loss (still allows scaling) as described in Section IV.

Note that our β scaling parameter is still applied to the custom loss function after

the normalization. Applicable to any loss function with a summation of other loss

functions such as GMM Custom Loss functions.

These four options were combined in all possible ways. The changes PS, GCS, and GN

were all booleans and were either True or False. Our β parameter had 10 values. This made

a total of 80 different models that used the GMM custom loss function. The unmodified

GMM loss had two variants with PS as True and False. Finally there was one regression

model with simple MSE loss to serve as a baseline for all the GMM loss function. Since the

regression model was very different from the other 82, it was not included in the analysis

but served as the alternate performance when covariance was not required. This made a

grand total of 83 models (82 in the analysis).
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Analysis of GMM Loss Changes.

All 83 loss functions described in Section V were used to train models with the

architecture of Section V according to the training described in Section V. The bike dataset

with only the 10 training and 9 validation data collects from 2016 was used to train and

validate the models. There was no test set for this section and all results were calculated

on the validation set. All models were evaluated by calculating the RMS error between the

mean of the highest weighted Gaussian and the truth. The NCE metric described in Section

IV was also calculated between the truth and the mean and covariance of highest weighted

Gaussian distribution.

Since there were 82 models with four factors to evaluate, an ANOVA was created

to explain the contribution of all four factors. The ANOVA model was fitted to only 82

models and the regression model was not used. The ANOVA model included all second

order interaction terms between the four factors. All the False values from the boolean

factors and CLS with a value of 1 were combined into the intercept to make the formula:

y =intercept+

PS + CLS + GCS + GN+

PS × CLS + PS × GCS + PS × GN + CLS × GCS + CLS × GN + GCS × GN (153)

where each variable has an associated β value which denotes the contribution of that

parameter. Our parameters PS, GCS, and GN are either 0 or 1 for False and True

respectively, CLS takes on the 10 values 1 to 1e10 in powers of 10, and our intercept value

is always 1. The × operator denotes the terms being multiplied together to make a new

column for second order interaction terms. This ANOVA was evaluated for three different

values of the dependent variable y – RMSE, NCE, and a combined metric. The combined

metric normalized RMSE and NCE (minus outliers) then added the result together to

reward models that lowered both metrics. The ANOVA results were then calculated as

shown in Table 5 (for the raw data see Appendix Section A). The results show the Beta
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values that are multiplied by each parameter to predict the output. Note that negative Beta

values were better since we were attempting to minimize both RMSE and NCE. The table

shows some interesting properties of how our factors are changing our metrics. First we

examine the first order effects.

Table 5: The ANOVA results of fitting the factors for each GMM loss function to the

metrics RMSE, NCE and a combined metric.

Name RMSE Beta values NCE Beta values Combined Metric Beta values

Intercept 77.2059 -18.1787 -9.4786

GCS 3.0715 -8.2863 -3.6033

GN -0.1007 91.9426 43.2989

PS 7.6556 -10.9132 -4.3932

GCS×GN -2.7262 -83.8478 -39.5263

GCS×PS -15.3753 87.5462 39.7368

GN×PS -2.2656 -82.5163 -39.0897

CLS -0.3910 -0.1317 -0.1002

CLS×GCS 0.0338 4.9499 2.3379

CLS×GN 1.0381 -4.9863 -2.2474

CLS×PS -0.1428 5.2056 2.4381

For first order effects it appeared that only GN and CLS were useful in making the

RMSE value smaller on average. Smaller RMSE due to CLS made sense because as

it grows larger we were adding more emphasis to the custom loss function which only

involves RMSE. GN may have been useful because in normalizing the two loss function

it may have given less emphasis to variance or more to the means. The other terms GCS
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and PS both seemed to on average increase the RMSE error when included. Next when

observing NCE, the terms GCS, PS and CLS all made the NCE metric better on average.

Only GN made the NCE worse on average. This may be because GN attempted to place

equal emphasis on the means and covariances which actually produced worse covariance

estimates. The trends of NCE were similar to the trends in the combined metric which

suggests that NCE had a larger impact on the combined metric compared to RMSE.

Next we look at the second order terms. We first note that the second order terms

represented a synergistic effect of the first order terms. For example if factor A had a β

value of 10 and factor B had a β value of 20 we would expect both to contribute 30. The

second order terms represented the difference from this combined value. For example, if

the true contribution of factor A and B from our example was 35, our second order term

A×B would be 5 to represent this synergistic effect of using both factors. With this we now

move on to explain the second order terms.

First we note that GN combined with any other factor usually decreased both the

RMSE and NCE metrics. However, this may have just been compensating to remove the

increase GN had as a first order term. Thus, when combined the bad effect of GN was just

canceled out. The other notable second order effect was GCS and PS. For the RMSE metric

is seems that combining GCS and PS removed the performance drop from the first order

terms and then actually made the RMSE better. However in terms of NCE it caused a drop

in performance to negate the positive effects of the first order terms. All other second order

terms involving CLS were small and only marginally changed the metrics. As with the first

order terms, the trends of NCE were mirrored in the combined metric.

For our final model we choose the model that performed best on the combined metric

since we were interested in minimizing both metrics. The best model ended up using PS,

GN and had a CLS=10. With this chosen model we examined it more closely to compare it

to standard techniques. For comparison we show the regression model and the unmodified
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GMM Loss function (no additional factors) model compared to our chosen model in Table

6. From the table it become clear that our chosen model was better in RMSE compared

to the regression model and better compared to unmodified GMM in terms of NCE. Thus

the ANOVA analysis allowed us to chose parameter which improved our RMSE by about

25 m compared to standard regression which provided no covariance. However, when we

compared the best GMM loss to unmodified GMM loss, the RMSE improvement is similar

but ironically the GMM loss estimate of covariance was very poor compared to our best

GMM loss. Also when comparing the combined metric the difference between the two

GMM models becomes obvious. Of the 82 models in the ANOVA all but six models had a

combined metric under 2 and one of those six worst models was the unmodified GMM loss.

In summary, our new GMM loss function was much better compared to both a regression

loss model and the standard GMM loss model. With this chosen model we now move on

to our analysis of the bike dataset

Table 6: Model comparison between select model loss functions.

Model Loss Function RMSE value NCE value Combined Metric

Regression with MSE Loss 93.5598 N/A N/A

Classic GMM Loss 69.7261 100.668 10.76

Best GMM Loss (PS, GN, CLS=10) 69.1153 0.23329 0.71

Bike Dataset

This section develops implementations of the ANN and filter integration framework

from Chapter III for the bike dataset. First, measurement ANNs were created using VLF

signals as input. Next the trained measurement ANNs were integrated with a Kalman filter

to show ANN integration with a classic filter. Next, a state prediction ANN was created
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for the bike dataset which used previous position information to predict the next position.

This state prediction ANN was integrated with the previous measurement ANN integrated

Kalman filter model by replacing the Kalman filter propagate function with the state predict

ANN. Finally complete filter ANNs were created to provide a position estimate from

measurements and previous state using only a single ANN.

Bike Dataset Measurement ANN.

This section outlines eight measurement ANNs for the bike dataset. The measurement

ANNs came in two groups, without metadata and without metadata. The metadata used for

the metadata ANNs included accelerometer, gyroscope, magnetic heading, true heading,

heart rate, odometer speed, crankshaft speed, percent through day, and season sine wave

according to step tracking from Table 3. The training and validation data was selected

from both the 2016 and 2017 bike dataset collects, however the test set was selected

exclusively from the 2017 collects. Each model group consisted of measurement ANNs

with different loss function outputs. The first measurement ANN in each set was trained

to output classification results for binned locations which were converted to 2D position.

The next measurement ANN in each set was a regression model trained to output the 2D

position directly. The third and fourth measurement ANN was trained to output 2D position

probabilities as a GMM. A list of the models is given in Table 7.

For the classification measurement ANNs, the model in Section V was trained

according to Section V. The final output layer had 100 outputs for each of the 100 location

bins. A softmax activation function was used on the final layer to output a valid probability

distribution. One model was trained for each the without metadata and the with metadata

groups. The model was trained only on the training data and validation was used to

determine the best model and parameters selection. First, the models were trained to output

the probability of each binned location. After this training the no metadata model obtained

a test accuracy was 64.1% compared to the metadata model which obtained an accuracy of
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69.0%. Note the test accuracy is only for runs in the second year of data collects. A heat

map of the metadata accuracy is show in Figure 39.

Figure 39: Test results from classification of measurement ANN with metadata. Each circle

represents the center of one location bin. Larger and red circles have higher accuracy while

smaller and blue circles have lower accuracy.

Next we turned this classification model into a regression model with the method

given in Section V. To obtain a regression result, the output probabilities of the model were

weighted by the 2D center of the location and summed along each position dimension.

Next the model weights (including the weights for the output probabilities) were fine tuned

with a learning rate of 1 × 10−6 for 500 epochs. After fine tune training, the metadata and
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Table 7: Test performance for the two groups of regression models. The variances σx

and σy are the variance of the test error for each model. Note the GMM models can give

variance per sample unlike the other two models which only have the final variance.

No Metadata

Loss Function RMSE (m) NCE

Classification Fine Tuned 78.68 N/A

Regression 88.86 N/A

Classic GMM ML 62.32 97.16

Best GMM ML 67.72 0.45

Metadata

Loss Function RMSE (m) NCE

Classification Fine Tuned 67.04 N/A

Regression 105.58 N/A

Classic GMM ML 56.32 24.85

Best GMM ML 69.59 0.75

no metadata models achieved a final test RMS error of 67.04 m and 78.63 respectively as

shown in Table 7. To provide some perspective on the performance error the entire area

of navigation was about 1 square kilometer. In addition, the distance between north-south

parallel roads was about 120m and east-west parallel roads was about 300m. Thus, our

RMS error is well within the bounds to uniquely identify which road we are traversing.

Also note that our truth source is a cell phone GPS receiver which itself is accurate to

about 5m [16]. Next we trained a model to estimate position directly.
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Regression measurement ANNs were trained to output the 2D position directly as a

regression output. These ANNs were based off the architecture in Section V and trained

according to Section V. Once again there were two different models trained, one without

metadata and one with metadata. The final layer of the regression models had two outputs

for the 2D location problem and the final layer activation was linear. As in the last section,

the models were trained and validated on data from both years but tested only on the second

year of data. This resulted in a test RMS error of 88.86 m for the no metadata measurement

ANN and 105.58 m for the metadata model. This is unusual since we expected adding

additional metadata to at worst have the same result. It appears that some metadata models

did not generalize well to the test set. This same outcome occurred in the next section for

GMM loss functions as well. Also the regression model performed worse compared to the

classification weighted regression. Estimating the probability of each location created a

better solution compared to directly estimating the output. The regression solution was

actually the worst as we shall see the MDN in the next section also outperform both

regression and classification weighted regression.

Finally MDN measurement ANNs with the architecture from Section V was trained

according to Section V. The final layer contained 42 outputs to describe the six parameters

of the seven distributions of the Gaussians in the GMM. Two different GMM loss functions

were used. First was the unmodified GMM loss with no extra additions. The second

was the best performing GMM loss function from Section V. Each of these loss function

types were trained without and with metadata to create a total of four models. The GMM

activation was used on the final output layer to ensure the covariance parameters created a

valid covariance matrix and the weights of each distribution summed to one. The without

metadata unmodified GMM loss resulted in a test RMS error of 62.32 m. Similarly the

metadata best GMM loss model achieved a test RMS error of 67.72 m. Again we see

the unusual result where our metadata loss for the best GMM model was 69.59 m which
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was worse compared to our without metadata result. As in the last section it appears the

metadata model also did not generalize well. Not including the lack of generalization

however, the MDN models perform better compared to the regression and classification

weighted regression. Next we compare the MDN models.

In a similar fashion to our GMM loss exploratory results in Section V, our unmodified

GMM loss function obtained better RMS error compared to the best GMM loss. In

our exploratory results the difference was under a meter and thus negligible. In these

results, the difference was a few meters for no metadata and worse for metadata since it

did not generalize as well. Despite the improvement in RMS error, once again the NCE

metric was significantly better for the best GMM loss model compared to the unmodified

GMM model. Due to the small but significant difference in RMS error and the very large

difference in NCE, we still preferred the best GMM loss model. While the RMS error

is better, the entire purpose of using an MDN is to provide covariance. The covariance

provided by the unmodified GMM model is quite poor when looking back on the GMM

loss exploratory results which had all but 6 models with a NCE under 2. Thus for the

following section we used the best GMM loss function model as a baseline to compare to

new filter implementations.

Kalman Filter Integration.

This section integrates a Kalman filter with the MDN measurement ANNs from the

previous section. A Kalman filter does not know how to relate the VLF signals to position,

since the signals are unknown. However the measurement ANNs from Sections V were

trained to determine the relationship between VLF signals and position. The measurement

ANNs learned position from VLF signals without a priori knowledge of the types of VLF

signals and how they relate to position. Thus, the measurement ANNs bridged the gap

between VLF signals and a Kalman filter to make position estimates. Using only a Kalman

filter, position estimation would not be possible without these ANN enabled measurements.
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The Kalman filter leveraged other a priori information about the problem that the

measurement ANN did not learn. For example, position is known to be continuous and the

integral of velocity. The Kalman filter incorporated this assumption easily in the dynamics

equations. The Kalman filter combined the measurement ANN position with the known

physical constraints on the position states to improve the final filter estimates.

Kalman Filter Design.

The measurement ANN from Section V and a Kalman filter were integrated by

providing the Kalman filter the measurement ANN position estimates. The measurement

ANNs estimated the current local level position z based on inputs s as shown ẑk =

A(sk,hk−1, θ
A). The Kalman filter takes the measurements ẑ into its update equation and

outputs a filtered version of the states x̂, since the output position in this case is the states

themselves.

The Kalman filter used a First Order Gauss Markov Model (FOGM) model for

acceleration and integrated to obtain velocity and then integrated again to obtain position.

The Kalman filter also included two states for the measurement bias of the measurement

ANNs in the north and east directions. The measurement biases served to remove the

time correlation of the assumed independent measurements. Without this bias, the Kalman

filter assigned too much confidence to the filter solution since the measurement ANN

generates correlated measurements which the Kalman filter believed were independent.

The correlation in the measurements was due to the fast update rate (100 ms) and that our

measurements ANN had persistent state information. The bias states were also modeled as

a FOGM process like the acceleration states. Thus the states of our Kalman filter were:

x = [n, e, ṅ, ė, n̈, ë, nmb, emb] (154)

where x is the state vector with north and east positions, north and east velocities, north and

east accelerations, and north and east measurement biases. Next we define the continuous

system dynamics matrix with the FOGM acceleration model with time constants of τn
acc, τ

e
acc

170



and the measurement bias with time constants τn
mb, τ

e
mb for the north and east directions

respectively:

F =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1/τn
acc 0 0 0

0 0 0 0 0 −1/τe
acc 0 0

0 0 0 0 0 0 −1/τn
mb 0

0 0 0 0 0 0 0 −1/τe
mb



(155)

Next we define the continuous noise correlation matrix:

Q =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 2σ2
n/τ

n
acc 0 0 0

0 0 0 0 0 2σ2
e/τ

e
acc 0 0

0 0 0 0 0 0 2σ2
e/τ

n
mb 0

0 0 0 0 0 0 0 2σ2
e/τ

e
mb



(156)

where the FOGM acceleration state noise standard deviations are σn
acc, σ

e
acc, and the

measurement bias FOGM process a noise standard deviations are σn
mb, σ

e
mb. The time

constants and noise standard deviations for the acceleration states were determined from

examining the autocorrelation of the double difference of position in the validation data.

the measurement bias time constants and noise values were determined from examining

the autocorrelation of the measurements from the validation set of data. However,

the measurement bias noise values from the dataset were multiplied by three because
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empirically the default value put too much trust in the measurements. The constants for

both processes are listed in Table 8. Note that these are the continuous time matrices which

were converted into their discrete counterparts with a time step of t = 0.1 s before being

used in the Kalman filter.

Table 8: Parameters used in the measurement ANN integrated Kalman filter.

Parameter Value

σn
acc 0.0577 m/s2

σe
acc 0.0388 m/s2

τn
acc 0.1 s

τe
acc 0.1 s

σn
mb 14.51 × 3 = 43.53 m

σe
mb 9.29 × 3 = 27.87 m

τn
mb 44.4 s

τe
mb 38.0 s

Now we define the measurement matrix where the ANN estimates the north and east

position states along with a bias term:

H =

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

 (157)

where the H matrix adds the measurement bias states and current position to estimate the

measured position from the ANN.

The last parameter is the measurement noise matrix R which has two forms. The

values for the measurement noise matrix Rdata were determined by analyzing the covariance

of the error between the measurement ANN estimates and the true output values on the
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validation data set over the entire set. The matrix Rdata was static and did not change during

filter execution. The second form for the measurement noise matrix used the covariance

value from the MDN at each time step denoted as RANN on a measurement-by-measurement

basis. For this experiment we used the covariance of the Gaussian distribution for which

the highest weight occurs. The MDN provided measurement noise matrix changed for

each time step based on the measurements. The dynamic property of the measurement

noise matrix made our Kalman filter adaptive to the noise in the measurements.

A total of four models were used for the Kalman filter experiment. Two models used

the static mean measurement noise matrix and the other two used dynamic measurement

noise matrices determined from the measurement MDN. These two types of models were

further split into measurements ANNs without metadata and with metadata.

A summary of the results running the four models is given in Table 9. As expected

all the test RMS errors improved from their measurement-only counterparts. Thus our

filter was able to smooth out some of the incorrect measurements and improve our final

position estimate. The metadata results were slightly worse which was due to the metadata

measurements being worse as shown in Table 7. In conclusion, the Kalman filter improved

performance compared to measurements alone as expected.

Bike Dataset State Predict ANN.

Next we trained a state predict ANN to estimate the next position given the current

position. This integration approach was done instead of correcting the Kalman filter

state predict because there was little a priori knowledge about the system dynamics. The

knowledge that does exist was could only make a simple motion FOGM model as shown

in the previous section. Such a simple system dynamics function did not take into account

the specifics of the bike problem such as staying on roads or bicycle dynamics. Correcting

this simple model may be more difficult compared to directly estimating the next position
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Table 9: Comparison of performance between both types of R matrix calculations– from

data and from ANN. Results persented for both test and validation sets.

No Metadata

Test Validation

Model RMSE NCE RMSE NCE

Static Rdata 63.28 6.33 40.14 8.31

Dynamic RANN 67.06 5.27 72.21 8.97

Metadata

Test Validation

Model RMSE NCE RMSE NCE

Static Rdata 63.83 2.60 61.81 6.47

Dynamic RANN 65.98 2.82 64.13 5.70

since we desire the state predict to learn the road position. Thus a state predict ANN was

trained from only the collected truth trajectories without any other a priori information.

The state predict ANN was trained using the training set and the validation set was

used for parameter and best model selection. The input to the state predict ANN was

the true normalized 2D position. The ANN used the best GMM loss function and thus

outputted the parameters for a GMM. Results were reported for the Gaussian distribution

with the maximum likelihood estimate.

Unlike the AFIT dataset state predict ANN in Section V, the bike state predict did

not become an very good identity transform. Interestingly the model favored output which

was biased to the inside of the roads as shown in Figure 40. A more desirable result would

have been better if the output an identity transform because that may have at least stayed

on the roads more often. However, it appears that training state predict ANNs is difficult
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as previously noted in the AFIT dataset. Despite this result, we proceeded to integrate this

state predict function with a Kalman filter.

Figure 40: Bike state predict function output. Position estimates are red and connected to

their true blue positions by a black line. Note the ANN input was the true position and the

ANN still favored outputting position that were not on the actual roads.

Bike Dataset Filter with State Predict ANN.

Next we replaced the state predict function of the Kalman filter with our trained ANN.

We used the Kalman filter from Section V with a few modifications. The first modification

was that we only estimated position and measurement bias thus removing velocity and
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acceleration. This reduced our states to:

x = [n, e, nmb, emb] (158)

where x is the state vector with north and east positions, and north and east measurement

bias. Next we define the system dynamics but instead of using a matrix to multiply by the

previous state, we use the state predict from the ANN:

x̂k|k−1 = fNN(x̂k−1|θ
F)

where our propagated state estimate (without measurement update) is x̂k|k−1, and fNN is

our trained state predict ANN with weights θF which takes the previous position x̂k−1 as

input. Since we are now using a function to propagate and not a matrix, we must swap our

Kalman filter for an EKF. To do this we require the derivative of the state predict ANN

with respect to the input positions. We can have calculated this derivative since the ANN

is differentiable; however, to save on computation time we assumed the derivative was an

identity matrix I2. This was usually very close to the true derivative because our update

rate (10 times a second) was so high, and our bicycle dynamics so slow, that the position

rarely changed much between time steps. Next we define the continuous noise correlation

matrix:

Q =



σn
pos 0 0 0

0 σe
pos 0 0

0 0 2σ2
e/τ

n
mb 0

0 0 0 2σ2
e/τ

e
mb


(159)

where we used the same measurement bias constants as from the previous section.

However, our noise values for the position states were determined by the covariance of

the prediction error on the validation set. The off diagonal values were small and thus

assumed to be zero making our noise sources in the state predict independent. A list of the

parameters used in the EKF are given in Table 10.
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Table 10: Parameters used in the measurement ANN integrated EKF.

Parameter Value

σn
pos 250 m

σe
pos 170 m

σn
mb 14.51 × 3 = 43.53 m

σe
mb 9.29 × 3 = 27.87 m

τn
mb 44.4 s

τe
mb 38.0 s

Our results for integrating were actually very poor as expected since we used a poor

state predict function that was biased toward the center of the map. The biased state predict

function caused all the filter estimates to be biased to the center. This in turn lead to a bad

filter solution as shown in Table 11.

Incorporating the state predict ANNs into the filter did not improve the performance

of the filter. In fact these are the worst results yet. Using only the measurement ANN

would have produced better results. However, this was due to the poor state predict ANN

training. It appears that training a stand alone state predict ANN was difficult for both

discrete and continuous problems. However in the discrete case a complete filter was able

to learn dynamics and become our best performing model. Thus, in the next section we

create a complete filter for the continuous output of the bike dataset.

ANN as Filter for Bike Dataset.

In this section ANNs were trained as a complete filter to determine position in the bike

dataset. Unlike previous ANNs, these filter ANNs used the last position estimate as well

as VLF features and metadata. This allowed the complete filter ANNs to make accurate

filtered predictions based on the learned system dynamics as well as the measurements. To
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Table 11: Performance of EKF integrated with a measurement ANN and the state predict

ANN for both the no metadata and metadata datasets.

No Metadata

Set RMSE (m) NCE

train 113.89 2.352

valid 128.09 3.74

test 132.75 3.78

Metadata

Set RMSE (m) NCE

train 114.77 2.524

valid 126.32 3.58

test 133.36 3.83

improve the performance compared to a measurement ANN, this filter ANN must learn

system dynamics. Without system dynamics, the filter ANN would become a slightly

different version of a measurement ANN.

Two filter ANNs were trained. One ANN did not use metadata as input while the other

was given the metadata input for the bike dataset. The previous position data consisted of

the mean and covariance of the Gaussian distribution with the maximum likelihood point.

The covariance information was in the upper triangular of the inverse covariance matrix

form as defined in Section II. Thus, the ANN was given a 2D point estimate of location

and the information to derive the covariance matrix. The filter ANN calculated the full

GMM distribution to characterize the output. During training the filter ANNs started with

the previous position information zeroed out. The filter ANNs were strictly given the last

predicted positions, and thus teacher forcing was never used.
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The results of this training for both the no metadata and the metadata models are

given in Table 12. From the table, the test RMS error was actually worse compared to our

previous estimates besides the regression model and state predict ANN integrated model.

To explain this performance, the table includes the training data as well as the validation

and test to show an interesting trend. Both filter ANN models over fit to the training data,

which was similar to the measurement ANNs; however, the filter ANNs have a problem in

generalizing that the other models did not.

While we did provide covariance information about the previous position to the filter

ANN, there was no guarantee the ANNs would utilized this information properly. For

example, during training the ANN might have learned some internal idea of how much to

trust the previous position, ignoring the covariance information. However, when evaluating

the validation set, the internal covariance built into the ANN was incorrect, since it was

based on training accuracies. This mismatch in covariance may have caused the over fitting

in all the models to be compounded in the filter ANN. The over fitting due to measurements

created further over fitting in the previous position estimate.

The discrete filter ANN in Section V avoided this problem because the previous

estimate was represented with probabilities making it impossible to separate location

from confidence in the location. Thus in order to improve the continuous filter ANN

performance, some method to prevent this over fitting is required. If this over fitting

problem is not dealt with then the MDN measurement ANNs may achieve better

performance as shown in our experiment.

Bike Dataset Conclusion.

After compiling all results as shown in Table 13 we now examine the trends across all

the trained models. The exact trends were more difficult to pin down compared to the AFIT

dataset, since the bike dataset contained some outliers and unexpected results. However we

still uncovered some general trends.
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Table 12: Model comparison between chosen GMM loss, regression and unmodified GMM

Loss.

No Metadata

Set RMSE NCE

train 26.21 0.6079

valid 86.83 3.4667

test 88.31 2.1651

Metadata

Set RMSE NCE

train 10.69 0.7694

valid 71.67 9.1634

test 83.22 9.4645

Our first trend is that unlike the AFIT dataset, which generally showed improved

performance when using metadata, the bike dataset actually experienced worse results

when using metadata. There are two possible reasons for this. The first is that more data

may be required to use the metadata well. The AFIT dataset contained much more data

compared to the bike dataset. Also, the continuous nature of the bike dataset along with

this lack of data, may have made it even more difficult to use the metadata. However, to

provide evidence for this conjecture we would need to collect more bike data. Another

explanation is that the metadata was just not as useful in the bike dataset compared to

the AFIT dataset. For example step data in the AFIT dataset may have been more useful

compared to odometry bike dataset. This would be strange since both datasets contained

the same metadata besides a few fields. The fields that were not in both also should have
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Table 13: Performance for the models of the Bike dataset.

No Metadata

Test Valid Train

Loss Function RMSE NCE RMSE NCE RMSE NCE

Classification Fine Tuned 78.68 N/A 78.35 N/A 13.62 N/A

Regression 88.86 N/A 95.81 N/A 51.86 N/A

Classic GMM ML 62.32 97.16 64.12 88.02 16.45 0.724

Best GMM ML 67.72 0.45 73.20 0.22 19.74 1.310

Static Rdata 63.28 6.33 40.14 8.31 22.77 0.758

Dynamic RANN 67.06 5.27 72.21 8.97 31.27 0.365

ANN Prop 132.75 3.78 128.09 3.74 113.89 2.352

Filter ANN 88.31 2.16 86.83 3.46 26.21 0.607

Metadata

Test Valid Train

Loss Function RMSE NCE RMSE NCE RMSE NCE

Classification Fine Tuned 67.04 N/A 66.08 N/A 13.03 N/A

Regression 105.58 N/A 93.34 N/A 53.83 N/A

Classic GMM ML 56.32 24.85 48.52 23.06 15.81 0.278

Best GMM ML 69.59 0.75 65.29 0.45 16.34 1.348

Static Rdata 63.83 2.60 61.81 6.47 19.14 0.913

Dynamic RANN 65.98 2.82 64.13 5.70 29.36 0.493

ANN Prop 133.36 3.83 126.32 3.58 114.77 2.524

Filter ANN 83.22 9.46 71.67 9.16 10.69 0.769
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been providing similar information. For example odometry in the bike data gives a speed

in a similar manner to the speed provided by the step counter in the AFIT data.

Our second observation is that in both the bike and AFIT dataset, training a state

predict ANN was difficult. Once again our standard filter dynamics obtained superior

results compared to our ANN provided dynamics. This is more evidence that some other

method is required to train a state predict ANN. Despite the failings of our state predict

ANN, the standard filter integration did in general provide better performance compared to

a measurement ANN only.

Conclusion

In conclusion we have shown two problems that used VLF signals to navigate using

ANNs. Our problems included a discrete indoor problem and a continuous outdoor

problem. Both problems used different examples of ANN integration to navigate with

varying degrees of success. Both problems created measurement ANNs to determine

position from VLF features. The measurement ANNs were successful in determining

position of the mobile antenna. The indoor case could discriminate between adjacent

rooms while the outdoor case could discriminate between adjacent parallel roads. Next

filtering with dynamics was introduced in different methods that included standard methods

and ANN enabled methods. The standard methods improved performance while the ANN

methods sometimes improved performance. The complete filter ANNs in the AFIT dataset

obtained the best performance on the AFIT dataset, while the Kalman filter provided

dynamics obtained the best performance on the bike dataset. Overall these results would

not be possible without ANNs given the lack of a priori information about the VLF signals.
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VI. Summary and Future Work

This dissertation outlined a framework for integrating ANNs and navigation filters.

The frameworks consists of two distinct sections that show how ANNs can replace filter

components and how ANNs can augment existing filters. These two types are not mutually

exclusive, and the third section detailed how the two types can complement each other.

Examples of previous work were placed into the proposed framework. This showed how

the proposed framework can be used to describe many different types of work, not just the

ones included in this dissertation.

Next, methods to improve training and performance of GMM MDNs were outlined.

The performance improvements focused on a new type of GMM loss function that separates

the mean estimation from the covariance. Further alterations to the GMM custom loss

function were also outlined. An ANOVA analysis was performed to determine the best set

of improvements to use for our bike dataset. The training methods remove some of the

guess work for users when training GMM MDNs.

Finally to showcase both the framework and MDN improvements, position estimates

were generated for a VLF navigation problem using different architectures outlined in the

framework with ANNs trained with the MDN improvements. The input and output features

for both problems, as well as the base ANN architecture and training, were defined before

starting the problem. The first problem was discrete indoor navigation on the AFIT dataset

and the second problem was continuous outdoor navigation on a bicycle.

First the AFIT dataset was analyzed. Measurement ANNs were trained to determine

discrete position directly from VLF features. The measurement ANNs achieved an

accuracy of 81.5% on the test dataset which was interspersed with the training set and

58.6% on the test set seven months later. Next, the measurement ANNs were integrated

with a Discrete Particle Filter (DPF) to introduce simple transition dynamics to the
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problem. The DPF integration increased the accuracy on all sets by about 2%. In order

to introduce more advanced dynamics, a state predict ANN was trained to predict state

transitions based on the training data. Unfortunately this state predict ANN only learned a

poor identity function and did not improve the accuracy when inserted as the dynamics for

the DPF integration. Finally a complete filter ANN was trained to use both measurements

and previous position probabilities to predict the next position. The complete filter ANN

performed the best of all the integrations with an accuracy of 86.7% on test data collected

during the training data and an accuracy of 63.8% seven months later.

Next, the bike dataset continuous position problem was analyzed. Measurement

ANNs which could output 2D position probabilities were trained to predict 2D position

using VLF measurements. The measurement ANNs used the best custom loss function

determined from the previous section. The test set RMSE of the measurement ANNs was

67.72 m. Next these measurement ANNs were integrated with a Kalman filter in order to

introduce simple bike dynamics to the problem. The Kalman filter integration reduced the

RMSE to 63.28 m. Next a state predict ANN was trained to learn the bike dynamics and

road traveled. However, the state predict ANN became biased to the center of the area of

navigation and did not improve our solution when integrated into the Kalman filter (now

an EKF). Finally, a complete filter ANN was trained to predict 2D continuous position

from measurements, previous position, and previous position covariance. However, the

complete filter ANN did not generalize well to the test data, because the complete filter

ANN ignored the given position covariance and instead developed an internal covariance

based on the training set which was not representative of the test set.

Thus, different types of integrations were explored in order to provide different

solutions for the VLF signals navigation problem. Determining measurements would not

be possible without measurement ANNs. Introducing simple dynamics improved solutions,

but ANN provided dynamics did not improve the solution. Finally, complete filter ANNs
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replaced entire filters, producing estimates with all available measurements and previous

state estimates.

Future Work

First for future work we propose implementing more examples of the ANN

framework. This dissertation describes implementations of a few examples of the

framework, but there were a few key examples that did not get completed. The first

incomplete example would be to explore state correction, since state correction was

not explicitly found in the literature but some examples were very close. Setting up

this framework implementation would also make the other correction methods easier to

implement. The next recommendation would be to explore the ANN as filter parts and

eventually make a gain ANN as outlined in Section III. A dataset which lends itself well

to this kind of problem would need to be found, since it does not seem like the large

measurement space of VLF signals would be an appropriate test example.

This dissertation outlined the idea of Gradient Normalization (GN) for GMM custom

loss functions. The concept was to normalize the relative contribution of the means

and covariances. While experimenting GN, it became apparent that GN also fixed the

absolute magnitude of each contribution. The fixed magnitude created problems in some

experiments where large learning rates prevented training. Without choosing an appropriate

learning rate for these examples, GN may have not worked at all. Thus some scheme

where the relative difference becomes fixed but the absolute magnitude is still related to the

original contributions should be developed and tested.

In both datasets the state predict ANNs did not perform well. The state predicts

ANNs either learned a poor identity transformation or were heavily biased. The continuous

state predict ANN estimated position but it could have estimated other navigation states

or a combination of states. For example velocity or acceleration states could have been

estimated which may have removed the position bias. Another possibility for both dataset
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would be to use very large number of time steps per training sequence. Longer training

sequences may force the ANNs to learn the actual dynamics instead of the identity. Another

possibility is using an entirely new architecture called attention networks. Recently these

networks have improved performance for machine translation [10] applications and could

show improvements for this application as well.

All the ANNs in this dissertation were trained using supervised learning with labeled

training data. Collecting the training, validation and test data was a menial task spanned

years and the indoor dataset required manual labeling. Also, as shown in the AFIT dataset,

the training data can become outdated and require new collects to learn the changes

in the environment. If some method to extract VLF features without supervised data

and be robust to changes in the future were developed, it may be possible to use VLF

signals in new locations without previous data collects. Such a method would work well

in Simultaneous Localization And Mapping (SLAM) applications where new areas are

explored and mapped at the same time.
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Appendix: Appendix

The Appendix contains extra sections that expand on derivation or definitions in the

body of the dissertation. Also included are more statistics on the datasets and results.

Probability NaN Derivation

This section contains a longer derivation of how a NaN shows up in a GMM loss

function. When the algorithm calculates the derivate of − ln(0) it will make a calculation

similar to:
∂

∂x
− ln(p(x)) = −

∂
∂x p(x)
p(x)

(160)

Next we substitute the probability for the sum of exponentials raised to some function

which is the form of a Gaussian mixtures distribution probability from Equation 58:

p(x) =

M∑
j=1

exp( f j(x j))

∂

∂x
− ln(p(x)) = −

∂
∂x

∑M
j=1 exp( f j(x j))∑M

j=1 exp( f j(x j))

∂

∂x
− ln(p(x)) = −

∑M
j=1 exp( f j(x j)) ∂

∂x f j(x j)∑M
j=1 exp( f j(x j))
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Next we note that if the total probability is zero and all the probabilities are greater than or

equal to zero, thus all the probabilities must be zero:

exp( f j(x j)) = 0∀ j ∈ {1 . . . M}

∂

∂x
− ln(p(x)) = −

∑M
j=1 0 ∂

∂x f j(x j)∑M
j=1 0

∂

∂x
− ln(p(x)) =

0
0

∂

∂x
− ln(p(x)) = NaN

which results in the partial derivative being Not a Number or NaN.

Probability Simplification Steps

This section contains the derivation to calculate the derivatives of GMM loss functions

for the probability simplification. First, the exponent of a Gaussian distribution is denoted

as e:

e(y,µ,Σ) =

(
−

1
2

(y − µ)TΣ−1(y − µ) − ln
(
(2π)D/2

|Σ|1/2
))

(161)

The derivative of a single Gaussian distribution is then:

∂LGMM

∂e
= −

∂ ln
(
w0 exp (e0)

)
∂e

∂LGMM

∂e
= −

∂ ln
(
exp (e0 + ln(w0))

)
∂e

∂LGMM

∂e
= −

∂ (e0 + ln(w0))
∂e

∂LGMM

∂e
= −

∂e0

∂e
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Now expanding to the a mixture of Gaussian distributions the derivative is:

∂LGMM

∂e
= −

∂ ln
(∑M−1

j=0 w j exp
(
e j

))
∂e

∂LGMM

∂e
= −

∂ ln
(∑M−1

j=0 exp
(
e j + ln(w j)

))
∂e

∂LGMM

∂e
= −

∂
(∑M−1

j=0 exp(e j+ln(w j))
)

∂e∑M−1
k=0 exp (ek + ln(wk))

∂LGMM

∂e
= −

∑M−1
j=0

∂ exp(e j+ln(w j))
∂e∑M−1

k=0 exp (ek + ln(wk))

∂LGMM

∂e
= −

∑M−1
j=0 exp

(
e j + ln(w j)

)
∂e j

∂e∑M−1
k=0 exp (ek + ln(wk))

∂LGMM

∂e
= −

M−1∑
j=0

exp
(
e j + ln(w j)

)
∑M−1

j=0 exp (ek + ln(wk))

∂e j

∂e

∂LGMM

∂e
= −

M−1∑
j=0

exp
(
e j + ln(w j)

)
∑M−1

k=0 exp (ek + ln(wk))

∂e j

∂e

Now realize that this can conveniently be written as a softmax function across all exponents:

∂LGMM

∂e
= −

M−1∑
j=0

softmax
(
e j + ln(w j)

) ∂e j

∂e
(162)

Next we assume that logarithms distribute over summations and take the derivative of

the resulting loss function:

LGMM = − ln

M−1∑
j=0

w j exp
(
e j

)
LGMM ≈ −

M−1∑
j=0

ln
(
exp

(
e j + ln(w j)

))
LGMM ≈ −

M−1∑
j=0

e j + ln(w j)

∂LGMM

∂e
≈ −

M−1∑
j=0

∂

∂e

(
e j + ln(w j)

)
∂LGMM

∂e
≈ −

M−1∑
j=0

∂e j

∂e

Thus we have calculated the derivative for various GMM loss functions.
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GMM Loss Derivations

This section contains the derivative of a GMM loss function with respect to the means.

From [103] we note the summation form of the derivative of one of the Gaussian mixtures

as:

ηd = µd − yd

ξ j =

n∑
d= j

A jd (µd − yd)

∂LGMM

∂µi
=

i∑
j=1

ξ jA ji

we rewrite the derivative of one of the Gaussian mixtures using matrix multiplication

instead of using summations:

ξ = Aη
∂LGMM

∂µ
=

(
ξT A

)T

∂LGMM

∂µ
=

((
Aη

)T A
)T

∂LGMM

∂µ
=

(
ηT AT A

)T

∂LGMM

∂µ
= AT Aη

and substituting using equation 64

∂LGMM

∂µ
= Σ−1η (163)

and then substitute for η
∂LGMM

∂µ
= Σ−1 (µ − y) (164)
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Mahalanobis Distance

This section outlines Mahalanobis distance as a metric to evaluate the accuracy of a

covariance estimate. This metric was not used in the dissertation but may be useful for

other applications involving GMM MDN where accuracy of covariance must be described

beyond one single number.

Figure 41: Q-Q plot of Mahalanobis distance squared vs Chi squared k=2 distribution.

Green line is reference 45 degree line. Red line is best fit line to quantile data. Data comes

from the bike dataset best GMM loss measurement ANN with no metadata

In order to better quantify where the MDN makes accurate/poor covariance estimates,

we introduce a visual method to evaluate covariance. For a single Gaussian distribution
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that attempts to estimate a true value y with mean µ and variance σ2 we can calculate

the probability of the target point y evaluated with the parameters µ, σ2. However, the

probability includes the error or the distance the mean was from the target as well as the

variance. If we wanted to single out the variance we would require more samples of y,

which we could then compute a sample variance in order to determine if the estimated

variance is accurate.

In our GMM examples however, we only have one sample per estimate of mean

and variance. To compare across different Gaussian distributions, we scale the error by

the variance to bring the estimates back to a assumed standard normal distribution with

σ2 = 1. Next the Mahalanobis distance is calculated for each estimate in the distribution.

The Mahalanobis distance is a multi-dimensional generalization of how many standard

deviations away our target y is from the mean µ. Mahalanobis distance can be thought of

like a hill climbing distance where it measures how much effort it takes to get to the top of

the hill (the mean) from a given point on the hill (our estimate). The steeper the climb the

larger the Mahalanobis distance and the more standard deviations away from the mean the

point was.

We will use the fact that Mahalanobis distance squared is distributed like a χ2
k

distribution with k degrees of freedom if the observations were normally distributed. We

can plot the Mahalanobis distance squared against the χ2
k on a Q-Q plot. The Q-Q plot is

useful to visualize the differences between two distributions. It can specifically show when

distributions have more or less variance compared to each other.

For example we use the bike dataset test results of the best GMM loss measurement

ANN with no metadata to show the Mahalanobis distance squared Q-Q plot in Figure

41. In this plot the estimated distribution overall has a similar variance to a Chi squared

distribution since the best red fit line is close to the desired green 45 degree line. However

there are a few points with larger distance which contain much more variance compared to
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a Chi squared distribution. Thus this plot could be interpreted as the estimates of variance

are accurate when the Mahalanobis distance is under 10. This corresponds to a sigma

value of about 3, so we could say our estimates are accurate up to the 3 sigma point of the

distribution. When points are more than 3 sigma away, our variance estimates become too

large compared to the true variance.

Thus the Mahalanobis distance Q-Q plot informed the user to the how accurate the

variance estimates were and where the variance estimates were incorrect. This is much

more than a single number could provide.

AFIT Dataset information

This section lists supplementary information for the AFIT dataset including number

of runs for each set and class distributions.

Table 14: Number of samples of each location bin in the AFIT Jan-Apr training set. Each

sample is for one 100ms window.

Location Bin Name Samples Per Bin
646 Rm 212 (0) 8285
646 Rm 214 (1) 6805

641-642 Hallway (2) 9404
646 Rm 216 (3) 8886

641 Lobby North Hallway (4) 9119
646 Rm 218 (5) 11566
640 Rm 240 (6) 8157
640 Rm 242 (7) 14581
640 Rm 244 (8) 10963

641 Lobby (9) 8848
641 Lobby North Hallway Diagonal (10) 6209

641 North Hallway (11) 15193
646 Hallway (12) 28137

640 Stairs East Hallway (13) 11515
640 Stairs North Hallway (14) 10064

640 Middle Hallway (15) 17412
640 South Hallway (16) 29247
640 West Hallway (17) 12748

641 Lobby East Hallway (18) 10468
640 Bane Lobby (19) 12923
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642 Kenney Lobby (20) 21646
640 Stairs South Hallway (21) 7323
640 Stairs West Hallway (22) 10840
640-646 North Skywalk (23) 6828

640 Rm 232 (24) 8046
640 Rm 234 (25) 11339
640 Rm 236 (26) 4945

640 North Stairs (27) 6109
640 Bane Hall (28) 9200

640 East Hallway (29) 19546
640 North Hallway (30) 24413

640-646 South Skywalk (31) 6940
642 South Hallway (32) 14791

646 Rm 220 (33) 5759
642 Locker Hallway (34) 12685

642 East Lobby (35) 6363
642 North Hallway (36) 17719
646 South Hallway (37) 2826

Einstein’s Bagel Shop (38) 21652
642 Kenney Auditorium (39) 15663

640 ANT Lab (40) 26272
641 East Hallway (41) 4925
640 South Stairs (42) 5048

642 East Hallway (43) 12051
642 Library Hallway (44) 8390

642 Kenney Exit (45) 6228
646 North Hallway (46) 4949

640 Doolittles (47) 19509
640 Rm 222 (48) 15761
640 Rm 220 (49) 13524

AFIT Dataset Result Tables

This section lists the detailed results of the AFIT experiment. There were a total

of four experiments which included a measurement ANN, measurement ANN DPF

integration, measurement ANN and state predict ANN integration, and finally a complete

filter ANN. Results are included for all sets for both no metadata and metadata. Note the
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Table 15: Number of runs in each of the AFIT datasets. Each run was about 45 minutes

long. Note that hardware difficulties at the beginning of the data collection process

prevented many early runs from containing metadata.

Dataset No Metadata Metadata
Jan-Apr Training 24 19

Jan-Apr Validation 22 19
Jan-Apr Test 21 17

May 6 6
July 2 2

August 9 9
September 9 9

October 9 9
November 9 9
December 7 7

measurement ANN table is a repeat of Table 4 included for comparison against the other

tables.
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Table 16: Performance comparison of the AFIT Map measurement ANN without metadata

and with metadata.

No Metadata
Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 93.6% 0.934 2.47%
Jan-Apr Validation 76.6% 0.760 2.06%

Jan-Apr Test 79.6% 0.790 2.59%
May 75.2% 0.746 4.43%
July 64.3% 0.633 9.41%

August 70.2% 0.694 4.41%
September 66.1% 0.651 4.07%

October 68.6% 0.678 4.49%
November 61.5% 0.605 4.47%
December 58.6% 0.575 4.96%

Metadata
Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 95.0% 0.948 2.72%
Jan-Apr Validation 78.7% 0.782 2.77%

Jan-Apr Test 81.5% 0.810 2.86%
May 75.1% 0.744 5.51%
July 63.3% 0.674 9.41%

August 72.5% 0.718 4.41%
September 71.2% 0.703 4.07%

October 69.9% 0.692 4.49%
November 59.1% 0.580 4.47%
December 57.5% 0.564 4.96%
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Table 17: Performance comparison of the AFIT measurement ANN integrated with a

Discrete Particle Filter (DPF). The DPF uses a state transition matrix to propagate. Results

listed for integration with the measurement ANN without metadata and with metadata.

No Metadata
Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 93.6% 0.946 2.47%
Jan-Apr Validation 78.5% 0.779 2.06%

Jan-Apr Test 81.3% 0.807 2.59%
May 77.6% 0.770 4.43%
July 66.2% 0.653 9.41%

August 72.3% 0.715 4.41%
September 67.6% 0.664 4.07%

October 70.4% 0.696 4.49%
November 63.7% 0.627 4.47%
December 61.1% 0.601 4.96%

Metadata
Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 96.1% 0.960 2.72%
Jan-Apr Validation 80.9% 0.804 2.77%

Jan-Apr Test 83.3% 0.828 2.86%
May 77.4% 0.768 5.51%
July 70.4% 0.696 9.41%

August 74.5% 0.738 4.41%
September 72.9% 0.720 4.07%

October 72.3% 0.717 4.49%
November 62.0% 0.609 4.47%
December 60.1% 0.591 4.96%
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Table 18: Performance comparison of the measurement ANN integrated with a discrete

particle filter that used a state predict ANN to propagate the states. Results listed for

integration with the measurement ANN without metadata and with metadata.

No Metadata
Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 87.8% 0.875 2.47%
Jan-Apr Validation 74.8% 0.741 2.61%

Jan-Apr Test 76.8% 0.761 2.59%
May 72.3% 0.715 4.43%
July 59.1% 0.579 9.41%

August 67.6% 0.667 4.41%
September 60.4% 0.593 4.07%

October 65.3% 0.644 4.49%
November 57.9% 0.567 4.47%
December 56.4% 0.552 4.96%

Metadata
Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 89.5% 0.892 2.72%
Jan-Apr Validation 76.2% 0.755 2.77%

Jan-Apr Test 78.7% 0.780 2.86%
May 72.5% 0.717 5.51%
July 62.7% 0.617 9.41%

August 69.8% 0.690 4.41%
September 63.0% 0.620 4.07%

October 65.8% 0.649 4.49%
November 58.0% 0.568 4.47%
December 56.4% 0.552 4.96%
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Table 19: Performance of the AFIT Map Filter ANN without and with metadata.

No Metadata
Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 96.0% 0.959 2.72%
Jan-Apr Validation 80.5% 0.800 2.77%

Jan-Apr Test 83.8% 0.834 2.86%
May 76.8% 0.763 5.15%
July 66.1% 0.652 9.41%

August 73.1% 0.724 4.41%
September 71.5% 0.706 4.07%

October 70.2% 0.695 4.49%
November 63.2% 0.623 4.47%
December 63.8% 0.629 4.96%

Metadata
Dataset Accuracy Cohen’s Kappa Acc. 95 % Confidence Interval

Jan-Apr Training 97.6% 0.975 2.72%
Jan-Apr Validation 83.4% 0.830 2.77%

Jan-Apr Test 86.7% 0.863 2.86%
May 81.8% 0.814 5.51%
July 67.7% 0.669 9.41%

August 76.8% 0.762 4.41%
September 74.8% 0.740 4.07%

October 75.7% 0.751 4.49%
November 65.3% 0.644 4.47%
December 62.7% 0.617 4.96%
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ANOVA Raw Data

This section contains the raw data from the ANOVA analysis. Note the columns

with N/A in GCS and GN were the classic GMM loss functions without and with PS

respectively.

GCS GN PS CLS Combined RMSE (m) NCE
N/A N/A FALSE 1 45.772995 69.726103 0.228782
N/A N/A TRUE 1 0.188199 85.662322 0.233288

TRUE FALSE FALSE 1 -0.265811 80.619274 0.238526
TRUE FALSE FALSE 10 -1.309523 70.695612 0.321132
TRUE FALSE FALSE 100 -1.320229 70.33945 0.360994
TRUE FALSE FALSE 1000 -1.26566 70.685172 0.372704
TRUE FALSE FALSE 10000 -1.138036 72.202244 0.405604
TRUE FALSE FALSE 100000 -0.673512 77.215511 0.426425
TRUE FALSE FALSE 1000000 -1.034788 73.110566 0.44665
TRUE FALSE FALSE 10000000 -0.74423 75.963637 0.449248
TRUE FALSE FALSE 100000000 -0.79609 75.019656 0.455714
TRUE FALSE FALSE 1000000000 -1.480262 67.935236 0.467144
TRUE TRUE FALSE 1 -1.492374 70.147922 0.472635
TRUE TRUE FALSE 10 1.636828 101.553251 0.484346
TRUE TRUE FALSE 100 -1.451049 69.567034 0.512125
TRUE TRUE FALSE 1000 -0.935367 74.836686 0.512675
TRUE TRUE FALSE 10000 0.922616 93.781834 0.513197
TRUE TRUE FALSE 100000 0.574057 88.456586 0.532787
TRUE TRUE FALSE 1000000 0.518785 89.562357 0.546051
TRUE TRUE FALSE 10000000 0.559771 89.845495 0.564287
TRUE TRUE FALSE 100000000 1.322013 96.050865 0.564997
TRUE TRUE FALSE 1000000000 1.430566 97.844571 0.573388
FALSE FALSE FALSE 1 1.105425 95.141747 0.583356
FALSE FALSE FALSE 10 -0.548162 77.631919 0.583541
FALSE FALSE FALSE 100 -0.894666 75.46416 0.590837
FALSE FALSE FALSE 1000 -0.877185 74.624161 0.595601
FALSE FALSE FALSE 10000 -0.814929 75.3642 0.595931
FALSE FALSE FALSE 100000 -0.938939 73.97075 0.60848
FALSE FALSE FALSE 1000000 -1.026453 73.038954 0.616812
FALSE FALSE FALSE 10000000 -0.946043 73.797783 0.621135
FALSE FALSE FALSE 100000000 -1.215495 71.320243 0.621453
FALSE FALSE FALSE 1000000000 -1.519742 67.77992 0.628468
FALSE TRUE FALSE 1 -1.211159 70.38245 0.641903
FALSE TRUE FALSE 10 -1.595653 69.115295 0.671211
FALSE TRUE FALSE 100 -1.214236 72.406012 0.672203
FALSE TRUE FALSE 1000 0.305777 86.461644 0.674786
FALSE TRUE FALSE 10000 0.542004 88.795275 0.675812
FALSE TRUE FALSE 100000 0.191324 86.487612 0.683521
FALSE TRUE FALSE 1000000 0.39636 87.347349 0.691934
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FALSE TRUE FALSE 10000000 0.114492 85.123423 0.692622
FALSE TRUE FALSE 100000000 0.053337 84.561007 0.70347
FALSE TRUE FALSE 1000000000 -0.120242 80.835561 0.707005
TRUE FALSE TRUE 1 2.775221 69.14568 0.713375
TRUE FALSE TRUE 10 4.578785 67.188347 0.722834
TRUE FALSE TRUE 100 -0.282658 74.503952 0.748598
TRUE FALSE TRUE 1000 -0.852359 70.037958 0.786926
TRUE FALSE TRUE 10000 0.791763 75.313927 0.830866
TRUE FALSE TRUE 100000 -0.519984 71.511894 0.844774
TRUE FALSE TRUE 1000000 -1.155973 70.157876 0.936413
TRUE FALSE TRUE 10000000 762.323852 71.588184 0.950627
TRUE FALSE TRUE 100000000 10.95005 68.617037 1.050585
TRUE FALSE TRUE 1000000000 2.169566 65.126116 1.065419
TRUE TRUE TRUE 1 7.800259 68.244478 1.537873
TRUE TRUE TRUE 10 1.196377 66.452154 1.620042
TRUE TRUE TRUE 100 0.532502 72.307573 1.659819
TRUE TRUE TRUE 1000 0.529078 84.584611 1.903883
TRUE TRUE TRUE 10000 0.963217 73.529916 2.020177
TRUE TRUE TRUE 100000 0.133006 69.617398 2.382587
TRUE TRUE TRUE 1000000 0.148753 68.469452 3.12183
TRUE TRUE TRUE 10000000 7.384288 72.310681 3.145951
TRUE TRUE TRUE 100000000 3.845222 63.023289 3.395685
TRUE TRUE TRUE 1000000000 0.73483 65.28342 3.799097
FALSE FALSE TRUE 1 1.599356 97.898703 4.016963
FALSE FALSE TRUE 10 -0.146745 77.073715 4.070446
FALSE FALSE TRUE 100 1.527519 75.162006 4.089652
FALSE FALSE TRUE 1000 1.384543 73.30684 4.123112
FALSE FALSE TRUE 10000 0.054194 71.961493 4.750703
FALSE FALSE TRUE 100000 0.447322 76.104728 5.562708
FALSE FALSE TRUE 1000000 -0.454622 76.788024 5.61043
FALSE FALSE TRUE 10000000 -0.14643 73.589647 5.691395
FALSE FALSE TRUE 100000000 0.521506 75.543265 5.974995
FALSE FALSE TRUE 1000000000 1.248092 69.290493 6.234133
FALSE TRUE TRUE 1 0.442774 71.227033 6.712612
FALSE TRUE TRUE 10 0.767009 67.602282 9.053484
FALSE TRUE TRUE 100 1.487359 98.378512 9.50618
FALSE TRUE TRUE 1000 0.771749 93.386564 13.046662
FALSE TRUE TRUE 10000 1.615113 99.868352 13.740747
FALSE TRUE TRUE 100000 0.900425 92.992929 18.635074
FALSE TRUE TRUE 1000000 0.974199 95.014701 20.360916
FALSE TRUE TRUE 10000000 1.018826 94.740834 26.970581
FALSE TRUE TRUE 100000000 1.393434 97.246486 100.668437
FALSE TRUE TRUE 1000000000 0.874345 93.342547 1621.491315
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